Mammalian Biology

, Volume 79, Issue 3, pp 208–214 | Cite as

Energy expenditure increases during the active season in the small, free-living hibernator Muscardinus avellanarius

  • Iris PretzlaffEmail author
  • Daniela Rau
  • Kathrin H. Dausmann
Original Investigation


Little is known about strategies employed by small mammals to reduce energy expenditure during the summer. To understand whether ambient conditions impact euthermic energy demands in a small free-living hibernator, we measured metabolic rate of hazel dormice (Muscardinus avellanarius) in the field. Furthermore, we aimed to reveal which variables influence torpor use. Our results show that hazel dormice altered euthermic energy expenditure during summer but not as expected as a response to environmental conditions. Euthermic resting metabolic rate was lowest directly after emergence from hibernation and increased by about 95% until the end of August. A considerable part of this increase was presumably caused by the changing influence of gender and rain on energy demands during different months, variation in food quality and quantity, and reversible size changes of organs that had been atrophied during hibernation. Torpor use in hazel dormice occurred more frequently when it was colder, earlier during the day, and in lighter individuals. Torpor was used routinely in males and non-reproductive females. We show that torpor is used more frequently than previously suggested by studies that only used visual proof of torpor use by surveying nest boxes.


Hazel dormouse Seasonality Energy expenditure Free-living Torpor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnold, W., Ruf, T., Reimoser, S., Tataruch, F., Onderscheka, K., Schober, F., 2004. Nocturnal hypometabolism as an overwintering strategy of red deer (Cervus elaphus). Am. J. Physiol.-Reg. I 286, R174–R181.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Bright, P.W., Morris, P.A., 1993. Foraging behaviour of dormice Muscardinus avellanarius in two contrasting habitats. J. Zool. 230, 69–85.CrossRefGoogle Scholar
  3. Bright, P.W., Morris, P.A., Wiles, N.J., 1996. Effects of weather and season on the summer activity of dormice Muscardinus avellanarius. J. Zool. 238, 521–530.CrossRefGoogle Scholar
  4. Christian, N., Geiser, F., 2007. To use or not to use torpor? Activity and body temperature as predictors. Naturwissenschaften 94, 483–487.PubMedCrossRefPubMedCentralGoogle Scholar
  5. Corp, N., Gorman, M.L., Speakman, J.R., 1997. Seasonal variation in the resting metabolic rate of male wood mice Apodemus sylvaticus from two contrasting habitats 15 km apart. J. Comp. Physiol. B 167, 229–239.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Corp, N., Gorman, M.L., Speakman, J.R., 1999. Daily energy expenditure of free-living male wood mice in different habitats and seasons. Funct. Ecol. 13, 585–593.CrossRefGoogle Scholar
  7. Darrow, J.M., Duncan, M.J., Bartke, A., Bona-Gallo, A., Goldman, B.D., 1988. Influence of photoperiod and gonadal steroids on hibernation in the European hamster. J. Comp. Physiol. A 163, 339–348.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Dausmann, K.H., Glos, J., Ganzhorn, J.U., Heldmaier, G., 2004. Physiology: hibernation in a tropical primate. Nature 429, 825–826.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Dausmann, K.H., 2005. Measuring body temperature in the field ‒ evaluation of external vs. implanted transmitters in a small mammal. J. Therm. Biol. 30, 195–202.Google Scholar
  10. Dausmann, K.H., Glos, J., Heldmaier, G., 2009. Energetics of tropical hibernation. J. Comp. Physiol. B 179, 345–357.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Fietz, J., Schlund, W., Dausmann, K.H., Regelmann, M., Heldmaier, G., 2004. Energetic constraints on sexual activity in the male edible dormouse (Glis glis). Oecologia 138, 202–209.PubMedCrossRefPubMedCentralGoogle Scholar
  12. Fietz, J., Pflug, M., Schlund, W., Tataruch, F., 2005. Influences of the feeding ecology on body mass and possible implications for reproduction in the edible dormouse (Glis glis). J. Comp. Physiol. B 175, 45–55.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Fietz, J., Schmid, J., Speakman, J.R., 2012. Seasonal variations in energy turnover and body temperature in free-living edible dormice, Glis glis. In: Ruf, T., Bieber, C., Arnold, W., Millesi, E. (Eds.), Living in a Seasonal World. Springer, Berlin, pp. 493–505.CrossRefGoogle Scholar
  14. Fowler, P.A., 1988. Thermoregulation in the female hedgehog, Erinaceus europaeus, during the breeding season. J. Reprod. Fertil. 82, 285–292.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Geiser, F., 1996. Torpor in reproductive endotherms. In: Geiser, F., Hulbert, A.J., Nicol, S.C. (Eds.), Adaptations to the Cold: 10th International Hibernation Symposium. University of New England Press, Armidale, pp. 81–86.Google Scholar
  16. Geiser, F., 2010. Aestivation in mammals and birds. In: Navas, C.A., Carvalho, J.E. (Eds.), Aestivation: Molecular and Physiological Aspects. Springer, Berlin, pp. 95–111.CrossRefGoogle Scholar
  17. Geiser, F., Drury, R.L., 2003. Radiant heat affects thermoregulation and energy expenditure during rewarming from torpor. J. Comp. Physiol. B 173, 55–60.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Geiser, F., Holloway, J.C., Körtner, G., 2007. Thermal biology, torpor and behaviour in sugar gliders: a laboratory-field comparison. J. Comp. Physiol. B 177, 495–501.Google Scholar
  19. Gittleman, J.L., Thompson, S.D., 1988. Energy allocation in mammalian reproduction. Am. Zool. 28, 863–875.CrossRefGoogle Scholar
  20. Hambly, C, Speakman, J.R., 2005. Contribution of different mechanisms to compensation for energy restriction in the mouse. Obes. Res. 13, 1548–1557.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Hayssen, V., Lacy, R.C., 1985. Basal metabolic rates in mammals: taxonomic differences in the allometry of BMR and body mass. Comp. Biochem. Phys. A 81, 741–754.CrossRefGoogle Scholar
  22. Heldmaier, G., Ruf, T., 1992. Body temperature and metabolic rate during natural hypothermia in endotherms. J. Comp. Physiol. B 162, 696–706.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Hudson, J.W., Scott, I.M., 1979. Daily torpor in the laboratory mouse, Mus musculus var. albino. Physiol. Zool. 52, 205–218.CrossRefGoogle Scholar
  24. Hume, I., Beiglböck, C., Ruf, T., Frey-Roos, F., Bruns, U., Arnold, W., 2002. Seasonal changes in morphology and function of the gastrointestinal tract of free-living alpine marmots (Marmota marmota). J. Comp. Physiol. B 172, 197–207.PubMedCrossRefPubMedCentralGoogle Scholar
  25. Juskaitis, R., 2005. Daily torpor in free-ranging common dormice (Muscardinus avellanarius) in Lithuania. Mamm. Biol. 70, 242–249.CrossRefGoogle Scholar
  26. Juskaitis, R., 2007. Feeding by the common dormouse (Muscardinus avellanarius): a review. Acta Zool. Lituanica 17, 151–159.CrossRefGoogle Scholar
  27. Juskaitis, R., 2008. The Common Dormouse Muscardinus avellanarius: Ecology, Population Structure and Dynamics. Institute of Ecology of Vilnius University Publishers, Vilnius.Google Scholar
  28. Karasov, W.H., 1992. Daily energy expenditure and the cost of activity in mammals. Am. Zool. 32, 238–248.CrossRefGoogle Scholar
  29. Kayser, C, 1939. Échanges respiratoires des hibernants réveillés. Ann. Physiol. Physicochim. Biol. 15, 1087–1219.Google Scholar
  30. Körtner, G., Geiser, F., 2000. Torporand activity patterns in free-ranging sugargliders Petaurus breviceps (Marsupialia). Oecologia 123, 350–357.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Künkele, J., Kraus, C., Trillmich, F., 2005. Does the unusual life history of the precocial cavy (Cavia magna) translate into an exceptional field metabolic rate? Physiol. Biochem. Zool. 78, 48–54.CrossRefGoogle Scholar
  32. Maddocks, T.A., Geiser, F., 2000. Seasonal variations in thermal energetics of Australian silvereyes (Zosterops lateralis). J. Zool. 252, 327–333.CrossRefGoogle Scholar
  33. Nowack, J., Mzilikazi, N., Dausmann, K.H., White, C.R., 2010. Torpor on demand: heterothermy in the non-lemur primate Galagomoholi. PLoS ONE 5 (5), 582–583.CrossRefGoogle Scholar
  34. Pretzlaff, I., Kerth, G., Dausmann, K.H., 2010. Communally breeding bats use physiological and behavioural adjustments to optimise daily energy expenditure. Naturwissenschaften 97, 353–363.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Quin, D.G., Riek, A., Green, S., Smith, A.P., Geiser, F., 2010. Seasonally constant field metabolic rates in free-ranging sugar gliders (Petaurus breviceps). Comp. Biochem. Phys. A 155, 336–340.CrossRefGoogle Scholar
  36. Rodolfi, G., 1994. Dormice Glis glis activity and hazelnut consumption. Acta Theriol. 39, 215–220.CrossRefGoogle Scholar
  37. Sailer, M.M., Fietz, J., 2009. Seasonal differences in the feeding ecology and behavior of male edible dormice (Glis glis). Mamm. Biol. 74, 114–124.CrossRefGoogle Scholar
  38. Selman, C., Lumsden, S., Bünger, L., Hill, W.G., Speakman, J.R., 2001. Resting metabolic rate and morphology in mice (Mus musculus) selected for high and low food intake. J. Exp. Biol. 204, 777–784.PubMedPubMedCentralGoogle Scholar
  39. Severinsen, T., Munch, I.C., 1999. Body core temperature during food restriction in rats. Acta Physiol. Scand. 165, 299–305.PubMedCrossRefPubMedCentralGoogle Scholar
  40. Speakman, J.R., Mitchell, S.E., 2011. Caloric restriction. Mol. Aspects Med. 32, 159–221.PubMedCrossRefPubMedCentralGoogle Scholar
  41. Storch, G., 1978. Muscardinus avellanarius (Linnaeus, 1758) ‒ Haselmaus. In: Niethammer, J., Krapp, F. (Eds.), Handbuch der Säugetiere Europas Band 1/I Nagetiere I. Akademische Verlagsgesellschaft, Wiesbaden, pp. 259–280.Google Scholar
  42. Turbill, C., Geiser, F., 2006. Thermal physiology of pregnant and lactating female and male long-eared bats, Nyctophilus geoffroyi and N. gouldi. J. Comp. Physiol. B 176, 165–172.PubMedCrossRefPubMedCentralGoogle Scholar
  43. Turner, J.M., Warnecke, L, Körtner, G., Geiser, F., 2012. Opportunistic hibernation by a free-ranging marsupial. J. Zool. 286, 277–284.CrossRefGoogle Scholar
  44. Wagner, D.M., Feldhamer, G.A., Newman, J.A., 2000. Microhabitat selection by golden mice (Ochrotomys nuttalli) at arboreal nest sites. Am. Midl. Nat. 144, 220–225.CrossRefGoogle Scholar
  45. Warnecke, L., Withers, P.C., Schleucher, E., Maloney, S.K., 2007. Body temperature variation of free-ranging and captive southern brown bandicoots Isoodon obesulus (Marsupialia: Peramelidae). J. Therm. Biol. 32, 72–77.CrossRefGoogle Scholar
  46. Webb, P.I., Speakman, J., Racey, PA, 1993. The implication of small reductions in body temperature for radiant and convective heat loss in resting endothermic brown long-eared bats (Plecotus auritus). J. Therm. Biol. 18, 131–135.CrossRefGoogle Scholar
  47. Weiner, J., 1987. Limits to energy budget and tactics in energy investments during reproduction in the Djungarian hamster (Phodopus sungorus sungorus Pallas 1770). Symp. Zool. Soc. Lond. 57, 167–187.Google Scholar
  48. Wieser, W., 1986. Bioenergetik: Energietranformationen bei Organismen. Thieme, Stuttgart.Google Scholar
  49. Willis, C.K.R., Brigham, R.M., Geiser, F., 2006. Deep, prolonged torpor by pregnant, free-ranging bats. Naturwissenschaften 93, 80–83.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2014

Authors and Affiliations

  • Iris Pretzlaff
    • 1
    Email author
  • Daniela Rau
    • 1
  • Kathrin H. Dausmann
    • 1
  1. 1.Department of Animal Ecology and ConservationBiocentre Grindel, University of HamburgHamburgGermany

Personalised recommendations