Advertisement

Mammalian Biology

, Volume 79, Issue 1, pp 77–80 | Cite as

High genetic diversity and low population structure in red foxes (Vulpes vulpes) from Croatia

  • Ana Galov
  • Magda SindičićEmail author
  • Tibor Andreanszky
  • Snježana Čurković
  • Danko Dežđek
  • Alen Slavica
  • Günther B. Hartl
  • Bastian Krueger
Short Communication

Abstract

The red fox (Vulpes vulpes) is a highly adaptable omnivorous mammal distributed across all continents on the northern hemisphere. Although the red fox is present throughout Europe, where it plays an important ecological and socio-economic role not only as a game species but also as a rabies reservoir, few studies have examined its population-level mitochondrial DNA variability. In this study, 27 mitochondrial DNA control region haplotypes were identified in 229 red fox samples taken from four regions in Croatia. Haplotype diversity of Croatian red foxes (0.901) was found to be among the highest of all European red fox populations studied to date. Genetic differentiation among regions was quite low, and statistically significant estimates of differentiation were obtained only when comparing the population from the peninsular region of Istria with the three continental populations. It seems that landscape barriers like rivers and small mountains do not restrict gene flow among foxes in the continental part of Croatia, while the combination of a narrow land bridge and altitudes exceeding 1000 m limit fox migration between Istria and the rest of the continent. Better understanding of small-scale population structure will require analysis of highly variable nuclear markers like microsatellites.

Keywords

Red fox Vulpes vulpes Croatia Control region Population differentiation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnason, U., Gullberg, A., Janke, A., Kullberg, M., Lehman, N., Petrov, E.A., Vainola, R., 2006. Pinniped phylogeny and a new hypothesis for their origin and dispersal. Mol. Phylogenet. Evol. 41 (2), 345–354.CrossRefGoogle Scholar
  2. Aubry, K.B., Statham, M.J., Sacks, B.N., Perrine, J.D., Wisely, S.M., 2009. Phylogeography of the North American red fox: vicariance in Pleistocene forest refugia. Mol. Ecol. 18, 2668–2686.CrossRefGoogle Scholar
  3. Bandelt, H.J., Forster, P., Röhl, A., 1999. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48.CrossRefGoogle Scholar
  4. Edwards, C.J., Soulsbury, CD., Statham, M.J., Ho, S.Y.W., Wall, D., Dolf, G., Iossa, G., Baker, P.J., Harris, S., Sacks, B.N., Bradley, D.G., 2012. Temporal genetic variation of the red fox, Vulpes vulpes, across western Europe and the British Isles. Q. Sci. Rev. 57, 95–104.CrossRefGoogle Scholar
  5. Excoffier, L, Laval, G., Schneider, S., 2005. Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol. Bioinform. Online 1, 47–50.Google Scholar
  6. Frati, F., Hartl, G.B., Lovari, S., Belibes, M., Markov, G., 1998. Quaternary radiation and genetic structure of the red fox (Vulpes vulpes) in the Mediterranean Basin, as revealed by allozymes and mitochondrial DNA. J. Zool. 245, 43–51.CrossRefGoogle Scholar
  7. Gachot-Neveu, H., Lefevre, P., Roeder, J.J., Henry, C, Pulle, M.L., 2009. Genetic detection of sex-biased and age-biased dispersal in a population ofwild carnivore the red fox, Vulpes vulpes. Zool. Sci. 26, 145–152.CrossRefGoogle Scholar
  8. Hall, T.A., 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/97/NT. Nucleic. Acids. Symp. Ser. 41, 95–98.Google Scholar
  9. Janicki, Z., Slavica, A., Konjevic, D., Severin, K., 2007. Zoologija divljaci. Veterinarski fakultet Sveučilišta u Zagrebu, Zagreb (in Croatian).Google Scholar
  10. Jensen, J.L., Bohonak, A.J., Kelley, S.T., 2005. Isolation by distance, web service. BMC Genet. 6 (1), 13.CrossRefGoogle Scholar
  11. Kirschning, J., Zachos, F.E., Cirovic, D., Radovic, I.T., Hmwe, S.S., Hartl, G.B., 2007. Population genetic analysis of Serbian red foxes (Vulpes vulpes) by means of mitochondrial control region sequences. Biochem. Genet. 45, 409–420.CrossRefGoogle Scholar
  12. Kutschera, V.E., Lecomte, N., Janke, A., Selva, N., Sokolov, A.A., Haun, T., Steyer, K., Nowak, C, Hailer, F., 2013. A range-wide synthesis and timeline for phylogeographic events in the red fox (Vulpes vulpes). BMC Evol. Biol. 13, 114,  https://doi.org/10.1186/1471-2148-13-114.CrossRefGoogle Scholar
  13. Macdonald, D.W., Reynolds, J.C., 2008. Vulpes vulpes. In: IUCN 2012. IUCN Red List of Threatened Species. Version 2012.2, Available at: https://doi.org/www.iucnredlist.org)(last accessed 09.04.13).
  14. Mitchell-Jones, A.J., Amori, G., Bogdanowicz, W., Krystufek, B., Reijnders, P.J.H., Spitzenberger, F., Stubbe, C, Thissen, J.B.M., Vohralík, V., Zima, J., 1999. The Atlas of European Mammals and AD. Poyser Ltd., London.Google Scholar
  15. Nei, M., 1987. Molecular Evolutionary Genetics. Columbia University Press, New York.CrossRefGoogle Scholar
  16. Slavica, A., Severin, K., Čač, Ž., Cvetnić, Ž., Lojkić, M., Dežđek, D., Konjević, D., Pavlak, M., Budinsćak, Z., 2010. Model širenja silvatične bjesnoće na teritoriju Republike Hrvatske tijekom perioda od trideset godina. Vet. Stanica 41 (3), 199–210 (in Croatian).Google Scholar
  17. Statham, M.J., Turner, P.D., O’Reilly, C., 2005. Use of PCR amplification and restriction enzyme digestion of mitochondrial D-loop for identification of mustelids in Ireland. Ir. Nat. J. 28, 1–6.Google Scholar
  18. Teacher, A.G., Thomas, J.A., Barnes, I., 2011. Modern and ancient red fox (Vulpes vulpes) in Europe show an unusual lack of geographical and temporal structuring, and differing responses within the carnivores to historical climatic change. BMC Evol. Biol. 11, 214,  https://doi.org/10.1186/1471-2148-11-214.CrossRefGoogle Scholar
  19. Thompson, J.D., Higgins, D.G., Gibson, T.J., 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting position-specific gap penalties and weight matrix choice. Nucleic Acids. Res. 22, 4673–4680.CrossRefGoogle Scholar
  20. Valière, N., Fumagalli, L.,Gielly, L., Miquel,C, Lequette, B., Poulle, M.-L., Weber, J.-M., Arlettaz, R., Taberlet, P., 2003. Long-distance wolf recolonization of France and Switzerland inferred from non-invasive genetic sampling over a period of 10 years. Anim. Conserv. 6, 83–92.CrossRefGoogle Scholar
  21. Yu, J.N., Kim, S., Oh, K., Kwak, M., 2012. Complete mitochondrial genome of the Korean red fox Vulpes vulpes (Carnivora, Canidae). Mitochondrial DNA 23 (2), 118–119.CrossRefGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2014

Authors and Affiliations

  • Ana Galov
    • 1
  • Magda Sindičić
    • 2
    Email author
  • Tibor Andreanszky
    • 3
  • Snježana Čurković
    • 2
  • Danko Dežđek
    • 4
  • Alen Slavica
    • 2
  • Günther B. Hartl
    • 5
  • Bastian Krueger
    • 5
  1. 1.Division of Biology, Faculty of ScienceUniversity of ZagrebZagrebCroatia
  2. 2.Faculty of Veterinary MedicineUniversity of ZagrebZagrebCroatia
  3. 3.Croatian Veterinary InstituteDepartment RijekaRijekaCroatia
  4. 4.Croatian Veterinary InstituteZagrebCroatia
  5. 5.Zoological Institute, Christian-Albrechts-UniversityKielGermany

Personalised recommendations