Advertisement

Mammalian Biology

, Volume 79, Issue 2, pp 117–122 | Cite as

Can pinewoods provide habitat for a deciduous forest specialist? A two-scale approach to the habitat selection of Bechstein’s bat

  • Aitor Arrizabalaga-Escudero
  • Maria Napal
  • Joxerra Aihartza
  • Inazio Garin
  • Antton Alberdi
  • Egoitz SalsamendiEmail author
Original Investigation

Abstract

Populations of Myotis bechsteinii in Sierra de Cazorla, Segura y Las Villas Natural Park (southwestern Spain) survive in a large, old-growth coniferous woodland, which is in contrast with known ecological preferences of the species. We tracked ten lactating females and studied patterns of habitat selection by Bechstein’s bat (Myotis bechsteinii) at two spatial scales: macrohabitat and microhabitat, regarding forest essence (coniferous vs. deciduous). The tracked individuals always foraged within forested areas and did not use areas devoid of trees. At the macrohabitat level, no positive selection of deciduous stands was apparent, suggesting selection studies of coarse resolution may not be able to capture subtle selection patterns. At the microhabitat level Myotis bechsteinii selected deciduous patches within the coniferous matrix, therefore, our results corroborate the perception of this species as dependent of services provided by deciduous woodlands. Larger foraging home ranges and commuting distances as compared with other Mediterranean localities suggest that our studied population inhabits a marginal or suboptimal environment in terms of habitat quality. We argue that this population of Bechstein’s bat has survived as a relict one probably as a consequence of fragmentation and transformation of deciduous forest ecosystems in the Mediterranean range.

Keywords

Myotis bechsteinii Deciduous forest Mediterranean Microhabitat Macrohabitat 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlén, I., 1990. Identification of Bats in Flight. Swedish Society for Conservation of Nature and Swedish Youth Association for Environmental Studies and Conservation, Stockholm, 50 pp.Google Scholar
  2. Aldridge, H.D.J.N., Brigham, R.M., 1998. Load carrying and manoeuvrability in an insectivorous bat: a test of the 5% rule of radio-telemetry. J. Mammal. 69, 379–382.CrossRefGoogle Scholar
  3. Animal Behaviour Society, 2006. Guidelines for the treatment of animals in behavioural research and teaching. Anim. Behav. 71, 245–253.CrossRefGoogle Scholar
  4. Arlettaz, R., Jones, G., Racey, P., 2001. Effect of acoustic clutter on prey detection by bats. Nature 414, 742–745.PubMedCrossRefGoogle Scholar
  5. Baagøe, H.J., 2001. Bechsteinfledermaus. In: Krapp, F. (Ed.), Handbuch der Säugetiere Europas, Band 4: Fledertiere. Alua-Verlag GmbH, Wiebelsheim, pp. 443–471.Google Scholar
  6. Barclay, R.M.R., 1989. The effect of reproductive condition on the foraging behaviour of female hoary bats, Lasiurus cinereus. Behav. Ecol. Sociobiol. 24, 31–37.CrossRefGoogle Scholar
  7. Benito Garzón, M., Sánchez de Dios, R., Sainz Ollero, H., 2008. Effects of climate change on the distribution of Iberian tree species. Appl. Veg. Sci. 11, 169–178.CrossRefGoogle Scholar
  8. Benzal, J., de Paz, O., Gisbert, J., 1990. Los murciélagos de la Península Ibérica y Baleares: patrones biogeográficos de su distribución. In: Benzal, J., de Paz, O. (Eds.), Los Murciélagos de España y Portugal. Icona Colección Técnica, Madrid, pp. 39–92.Google Scholar
  9. Blant, M., Moretti, M., Tinner, W., 2010. Effects of climatic and palaeoenvironmental changes on the occurrence of Holocene bats in the Swiss Alps. The Holocene 20, 711–721.CrossRefGoogle Scholar
  10. Brändle, M., Brandl, R., 2001. Species richness of insects and mites on trees: expanding Southwood. J. Anim. Ecol. 70, 491–504.CrossRefGoogle Scholar
  11. Brigham, R.M., 2007. Bats in forests: what we know and what we need to learn. In: Lacki, M.J., Hayes, J.P., Kurta, A. (Eds.), Bats in Forests; Conservation and Management,. Johns Hopkins University Press, Baltimore, pp. 1–15, 329 pp.Google Scholar
  12. Brigham, R.M., Francis, R.L., Hamdorf, S., 1997. Microhabitat use by two species of Nyctophilus bats: a test of ecomorphology theory. Aust. J. Zool. 45, 553–560.CrossRefGoogle Scholar
  13. Brinkmann, R., Niermann, I., Steck, C., 2007. Quartiernutzung und Habitat-präferenz von Bechsteinfledermäusen (Myotis bechsteinii) in einem Eichen-Hainbuchenwald in der oberrheinischen Tiefebene. Mitt. bad. Landesver. Naturkunde u. Naturschuntz 20, 181–195.Google Scholar
  14. Carrión, J.S., 2001. Pastoreo y vulnerabilidad de la vegetación en la alta montaña mediterranea durante el Holoceno. Cuadernos de geografía 69/70, 7–22.Google Scholar
  15. Carrión, J.S., Munuera, M., Dupré, M., Andrade, A., 2001. Abrupt vegetation changes in the Segura Mountains of southern Spain throughout the Holocene. J. Ecol. 89, 783–797.CrossRefGoogle Scholar
  16. Carrión, J.S., Yll, E.I., Willis, K.J., Sánchez, P., 2004. Holocene forest history of the eastern plateaux in the Segura Mountains (Murcia, southeastern Spain). Rev. Paleo. Palynol. 132, 219–236.CrossRefGoogle Scholar
  17. Carrión, J.S., Fernández, S., Jiménez-Moreno, G., Fauquette, S., Gil-Romera, G., González-Sampériz, P., Finlayson, C., 2010. The historical origins of aridity and vegetation degradation in southeastern Spain. J. Arid Environ. 74, 731–736.CrossRefGoogle Scholar
  18. Carro, F., 2007. Myotis bechsteinii (Kuhl, 1817). In: Palomo, L.J., Gisbert, J., Blanco, J.C. (Eds.), Atlas y Libro Rojo de los Mamíferos Terrestres de España. Tragsa-SECEM-SECEMU, Madrid, pp. 171–173.Google Scholar
  19. Č erveny´, J., Bürger, P., 1989. Bechstein’s bat, Myotis bechsteinii (Kuhl, 1817), in the Sumava region. In: Hanak, V., Horacek, I., Gaisler, J.(Eds.), European Bat Research. Charles University Press, Prague, pp. 591–598.Google Scholar
  20. Coleman, J.L., Barclay, R.M.R., 2011. Influenceof urbanizationondemography oflittle brown bats (Myotis lucifugus) in the prairies of North America. PLoS ONE 6 (5), e20483.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Decaëns, T., Dutoit, T., Alard, D., Lavelle, A., 1998. Factors influencing soil macrofaunal communities in post-pastoral successions of western France. Appl. Soil Ecol. 9, 361–367.CrossRefGoogle Scholar
  22. Dietz, M., Pir, J.B., 2009. Distribution and habitat selection of Myotis bechsteinii in Luxembourg: implications for forest management and conservation. Folia Zool. 58, 327–340.Google Scholar
  23. Dietz, C., von Helversen, O., Nill, D., 2009. Bats of Britain, Europe and Northwest Africa. A & C Black Publishers, London.Google Scholar
  24. Dussault, C., Courtois, R., Huot, J., Ouellet, J.P., 2001. The use of forest maps for the description of wildlife habitats: limits and recommendations. Can. J. Forest Res. 31, 1227–1234.CrossRefGoogle Scholar
  25. Fitzsimons, P., Hill, D.A., Greenaway, F., 2002. Patterns of habitat use by female Bech-stein’s bats (Myotis bechsteinii) from a maternity colony in a British woodland. School of Biological Sciences, University of Sussex, Sussex.Google Scholar
  26. Garshelis, D.L., 2000. Delusions in habitat evaluation: measuring use, selection, and importance. In: Biotani, L., Fuller, T.K. (Eds.), Research Techniques in Animal Ecology: Controversies and Consequences. Columbia University Press, New York, pp. 111–164.Google Scholar
  27. Giller, P.S., 1996. The diversity of soil communities, the poor man’s tropical rainforest. Biodivers. Conserv. 5, 135–168.CrossRefGoogle Scholar
  28. Goiti, U., Aihartza, J., Garin, I., Zabala, J., 2003. Influence of habitat on the foraging behaviour of the Mediterranean horseshoe bat, Rhinolophus euryale. Acta Chiropterol. 5, 75–84.CrossRefGoogle Scholar
  29. Gomez-Mercado, F., 2011. Vegetación y flora de la Sierra de Cazorla. Guineana 17, 1–481.Google Scholar
  30. Greenaway, F., Hill, D., 2004. Woodland management advice for Bechstein’s bat and barbastelle bat. English Nature Research Reports, Report Number 658.Google Scholar
  31. Hagar, J.C., 2007. Wildlife species associated with non-coniferous vegetation in Pacific Northwest conifer forests: a review. Forest Ecol. Manag. 246, 108–122.CrossRefGoogle Scholar
  32. Hooge, P.N., Eichenlaub, W.M., 1999. Animal Movement Extension to ArcView. Alaska Biological Sciences Center, Anchorage.Google Scholar
  33. IUCN, 2012. IUCN Red List of Threatened Species. Version 2012.2., <https://doi.org/www.iucnredlist.org> . Downloaded on 07 February 2013.
  34. Johnson, D.H., 1980. The comparison of usage and availability measurements for evaluating resource preference. Ecology 61, 65–71.CrossRefGoogle Scholar
  35. Kaňuch, P., Danko, Š., Celuch, M., Krištín, A., Pjenčák, P., Matis, Š., Šmídt, J., 2008. Relating bat species presence to habitat features in natural forests of Slovakia (Central Europe). Mamm. Biol. 73, 147–155.CrossRefGoogle Scholar
  36. Kerth, G., König, B., 1999. Fission-fusion and non-random associations in female Bechstein’s bats (Myotis bechsteinii). Behaviour 136, 1187–1202.CrossRefGoogle Scholar
  37. Kerth, G., Morf, L., 2004. Behavioural and genetic data suggest that Bechstein’s bats predominantly mate outside the breeding habitat. Ethology 110, 987–999.CrossRefGoogle Scholar
  38. Kerth, G., Wagner, M., König, B., 2001. Roosting together, foraging apart: information transfer about food is unlikely to explain sociality in female Bechstein’ bats (Myotis bechsteinii). Behav. Ecol. Sociobiol. 50, 283–291.CrossRefGoogle Scholar
  39. Kerth, G., Mayer, F., Petit, E., 2002. Extreme sex-biased dispersal in the communally breeding, nonmigratory Bechstein’s bat (Myotis bechsteinii). Mol. Ecol. 11, 1491–1498.PubMedCrossRefPubMedCentralGoogle Scholar
  40. Knight, T.W., Douglas, D.W., 1996. How many habitats do landscapes contain? Ecology 77 (6), 1756–1764.CrossRefGoogle Scholar
  41. Kurta, A., Bell, G.P., Nagy, K.A., Kunz, T.H., 1989. Energetics of pregnancy and lactation in free-ranging little brown bats (Myotis lucifugus). Physiol. Zool. 62, 804–818.CrossRefGoogle Scholar
  42. Kusch, J., Weber, C., Idelberger, S., Koob, T., 2004. Foraging habitat preferences of bats in relation to food supply and spatial vegetation structures in a western European low mountain range forest. Folia Zool. 53, 113–128.Google Scholar
  43. Manly, B.F.J., McDonald, L.L., Thomas, D.L., McDonald, T.L., Erickson, W.P., 2002. Resource Selection by Animals. Statistical Design and Analysis for Field Studies, 2nd ed. Kluwer Academic Publishers, Dordrecht.Google Scholar
  44. Meschede, A., Heller, K.-G., 2000. Ökologie und Schutz von Fledermäusen in Wäldern- Schriftenreihe für Landschaftspflege und Naturschutz 66. Hrsg.: Bun-desamt für Naturschutz. Bonn Bad Godesberg.Google Scholar
  45. Mitchell, K., 2007. Quantitative Analysis by the Point-Centered Quarter Method. Department of Mathematics and Computer Science, Hobart and William Smith Colleges, Geneva, NY, 34 pp.Google Scholar
  46. Napal, M., 2011. Comparative study of Bechstein’s bats in contrasting climates: the legacy of forest transformation, PhD thesis. University of the Basque Country, UPV/EHU, Leioa.Google Scholar
  47. Napal, M., Garin, I., Goiti, U., Salsamendi, E., Aihartza, J., 2009. Selection of maternity roosts by Myotis bechsteinii (Kuhl. 1817) in the Southwestern Iberian Peninsula. Acta Chiropterol. 11, 425–433.CrossRefGoogle Scholar
  48. Napal, M., Garin, I., Goiti, U., Salsamendi, E., Aihartza, J., 2010. Habitat selection by Myotis bechsteinii in the southwestern Iberian Peninsula. Ann. Zool. Fenn. 47, 239–250.CrossRefGoogle Scholar
  49. Napal, M., Garin, I., Goiti, U., Salsamendi, E., Aihartza, J., 2013. Past deforestation of Mediterranean Europe explains the present distribution of the strict forest dweller Myotis bechsteinii. Forest Ecol. Manag. 293, 161–170.CrossRefGoogle Scholar
  50. Norberg, U.M., Rayner, J.M.V., 1987. Ecological morphology and flight in bats (Mammalia: Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Philos. T. Roy. Soc. B. 316, 335–427.CrossRefGoogle Scholar
  51. Postawa, T., 2004. Changes in bat fauna during the Middle and Late Holocene as exemplifiedbythanatocoenosesdatedwith14CAMSfromKraków-Cze˛tochowa Upland caves, Poland. Acta Chiropterol. 6, 269–292.CrossRefGoogle Scholar
  52. Racey, P.A., Entwistle, A.C., 2003. Conservation ecology of bats. In: Kunz, T.H., Fenton, M.B. (Eds.), Bat Ecology. University of Chicago Press, Chicago, pp. 680–743.Google Scholar
  53. Rebelo, H., Tarroso, P., Jones, G., 2010. Predicted impact of climate change on European bats in relation to their biogeographic patterns. Glob. Change Biol. 16, 561–576.CrossRefGoogle Scholar
  54. Safi, K., Kerth, G., 2004. A comparative analysis of specialization and extinction risk in temperate-zone bats. Conserv. Biol. 18, 1293–1303.CrossRefGoogle Scholar
  55. Schlapp, G., 1999. Myotis bechsteinii (Kuhl, 1817). In: Mitchell-Jones, A.J., Amori, W., Bogdanowicz, W., Kryštufek, B., Reijnders, P.J.H., Spitzenberger, F., Stubbe, M., Thissen, J.B.M., Vohralík, V., Zima, J. (Eds.), The Atlas of the European Mammals. T & A D Poyser, London, pp. 100–101.Google Scholar
  56. Schnitzler, H.-U., Moss, C.F., Denzinger, A., 2003. From spatial orientation to food acquisition in echolocating bats. Trends Ecol. Evol. 18, 386–394.CrossRefGoogle Scholar
  57. Schofield, H., Morris, C., 2000. Ranging behaviour and habitat preferences of female Bechstein’s bat, Myotis bechsteinii (Kuhl, 1818), in summer; with a review of its status, distribution, behaviour and ecology in the UK. The Vincent Wildlife Trust 27.Google Scholar
  58. Siemers, B.M., Swift, S., 2006. Differences in sensory ecology contribute to resource partitioning in the bats Myotis bechsteinii and Myotis nattereri (Chiroptera, Ves-pertilionidae). Behav. Ecol. Sociobiol. 59, 373–380.CrossRefGoogle Scholar
  59. Stephens, D.W., Krebs, J.R., 1986. Foraging Theory. Princeton University Press, Princeton.Google Scholar
  60. Sterling, E.J., Nguyen, N., Fashing, P.J., 2000. Spatial patterning in nocturnal prosimi-ans: a review of methods and relevance to studies of sociality. Am. J. Primatol. 51, 3–19.PubMedCrossRefGoogle Scholar
  61. Tew, T.E., Todd, I.A., Macdonald, D.W., 2000. Arablehabitat usebywoodmice(Apode-mus sylvaticus), 2. Microhabitat. J. Zool. 250, 305–311.CrossRefGoogle Scholar
  62. Thomas, D.L., Taylor, E.J., 1990. Study designs and tests for comparing resource use and availability. J. Wildlife Manage. 54, 322–330.CrossRefGoogle Scholar
  63. Thomas, D.L., Taylor, E.J., 2006. Study designs and tests for comparing resource use and availability II. J. Wildlife Manage. 70, 324–336.CrossRefGoogle Scholar
  64. Tiscar, P.A., Linares, J.C., 2011. Pinus nigra subsp. salzmannii forests from southeast Spain: using structure and process information to guide management. In: Frisiras, C.T. (Ed.), Pine Forests: Types, Threats and Managements. Nove Science Publishers, Hauppauge, pp. 279–314.Google Scholar
  65. White, G.C., Garrot, R.A., 1990. Analysis of Wildlife Radio-Tracking Data. Academic Press, London.Google Scholar
  66. Wolz, I., 1993a. Das Beutespektrum der Bechsteinfledermaus Myotis bechsteinii (Kuhl, 1817) ermittelt aus Kotanalysen. Myotis 31, 27–68.Google Scholar
  67. Wolz, I., 1993b. Untersuchugen zur Nachweisbarkeit von Beutetierfragmenten in Kot von Myotis bechsteinii (Kuhl, 1817). Myotis 31, 5–26.Google Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2014

Authors and Affiliations

  • Aitor Arrizabalaga-Escudero
    • 1
  • Maria Napal
    • 1
  • Joxerra Aihartza
    • 1
  • Inazio Garin
    • 1
  • Antton Alberdi
    • 1
  • Egoitz Salsamendi
    • 1
    Email author
  1. 1.Department of Zoology and Animal Cell Biology, Faculty of Science and TechnologyUniversity of the Basque Country UPV/EHULeioaSpain

Personalised recommendations