Advertisement

Mammalian Biology

, Volume 79, Issue 2, pp 90–95 | Cite as

Small-scale altitudinal effects on reproduction in bank voles

  • Sabine M. HilleEmail author
  • Heiko G. Rödel
Original Investigation

Abstract

Elevation gradients and corresponding changes in environment have the potential to affect seasonal reproduction and mortality and hence the seasonal age structure of animal populations. This has been frequently shown in mammals and birds on larger geographic scales, but evidence for small-scale gradient effects is scanty. We studied such small scale altitudinal effects on the proportions of juveniles in a population of bank voles (Myodes glareolus) in a forested habitat along an elevation gradient of 355 m. This was done by regular live trapping in different altitudes over a two-year period. We also measured altitudinal differences in ambient temperatures and vegetational parameters in order to shed light on the underlying mechanisms of such purported differences in age structure. As could be expected for a seasonal breeder, the proportion of juveniles showed an initial increase in spring, an optimum in summer and a subsequent regression in early autumn, reflecting the seasonal pattern of reproduction. In addition, there was evidence for altitudinal effects on the occurrence of juveniles, which was decreased in higher altitudes, assumingly driven by altitudinal differences in onset and/or intensity of annual breeding activity. This altitudinal gradient in juvenile occurrence was partly explained by corresponding differences in ambient temperatures. Furthermore, there was good support that the higher abundance of herbs in lower altitudes played an important role in explaining the altitudinal differences in the proportion of juveniles. In conclusion, our study strongly supports the existence of altitudinal small-scale gradient effects on reproductive parameters in a small rodent, most probably due to the action of altitude-related factors such as microclimate and vegetational parameters.

Keywords

Myodes glareolus Age structure Microclimate effects Seasonality Juveniles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baláž, I., Ambros, M., 2006. Shrew somatometry and reproduction in Slovakia. 1st part: Chionomys nivalis, Microtus tatricus, Microtus subterraneus, Myodes glareo-lus. Biologia: Sect. Zool. 61, 611–620.Google Scholar
  2. Barash, D.P., 1974. The evolution of marmot societies: a general theory. Science 185, 415–420.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Barnett, S.A., 1973. Maternal processes in the cold adaptation of mice. Biol. Rev. 48, 477–508.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Bates, D., Maechler, M., Bolker, B., 2012. lme4: Linear Mixed-Effects Models Using S4 Classes. R Package Version 0.999999-0. https://doi.org/CRAN.R-project.org/package=lme4
  5. Bieber, C.R., Juskaitis, Turbill, C., Ruf, T., 2012. High survival during hibernation affects onset and timing of reproduction. Oecologia 169, 155–166.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Bocchini, M., Nieder, L., 1994. Habitat preferences, structure and population dynamics of Clethrionomys glareolus in the northern Appennines. Pol. Ecol. Stud. 20, 107–113.Google Scholar
  7. Boonstra, R., 1994. Population cycles in microtines: the senescence hypothesis. Evol. Ecol. 8, 196–219.CrossRefGoogle Scholar
  8. Bronson, M.T., 1979. Altitudinal variation in the life history of the golden-mantled ground squirrel (Spermophilus lateralis). Ecology 60, 272–279.CrossRefGoogle Scholar
  9. Bronson, F.H., 1985. Mammalian reproduction: an ecological perspective. Biol. Reprod. 32, 1–26.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Bujalska, G., 1970. Reproduction stabilizing elements in an island population of Clethrionomys glareolus (Schreber, 1780). Acta Theriol. 15, 381–412.CrossRefGoogle Scholar
  11. Burnham, K.P., Anderson, D.R., 1998. Model Selection and Multimodel Inference – A Practical Information Theoretic Approach. Springer, New York, USA.Google Scholar
  12. Chapman, J.A., Lind, G.S., 1973. Latitude and litter size of the California ground squirrel, Spermophilus beecheyi. Bull. S. Ca. Acad. Sci. 72, 101–105.Google Scholar
  13. Dobson, F.S., Oli, M.K.O., 2001. The demographic basis of population regulation in Columbian ground squirrels. Am. Nat. 158, 236–247.PubMedCrossRefGoogle Scholar
  14. Eccard, J.A., Ylönen, H., 2001. Initiation of breeding after winter in bank voles: effects of food and population density. Can. J. Zool. 79, 1743–1753.CrossRefGoogle Scholar
  15. Engen, S., Saether, B.E., Kvalnes, T., Jensen, H., 2012. Estimating fluctuating selection in age-structured populations. J. Evol. Biol. 25, 1487–1499.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Faraway, J.J., 2006. Extending the Linear Model with R. Generalized Linea, Mixed Effects and Nonparametric Regression Models. Chapman & Hall, Boca Raton, USA.Google Scholar
  17. Haapakoski, M., Ylönen, H., 2010. Effects of fragmented breeding habitat and resource distribution on behavior and survival of the bank vole (Myodes glareo-lus). Pop. Ecol. 52, 427–435.CrossRefGoogle Scholar
  18. Hansen, T.F., Stenseth, N.C., Henttonen, H., 1999. Multiannual vole cycles and population regulation during longwinters:ananalysisofseasonal densitydependence. Am. Nat. 154, 129–139.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Hansson, L., 1996. Regional differences in behaviour in bank voles (Clethrionomys glareolus): dyadic encounters. Behav. Ecol. Sociobiol. 39, 331–334.CrossRefGoogle Scholar
  20. Happold, D.C.D., Happold, M., 1992. The ecology of three communities of small mammals at different altitudes in Malawi, Central Africa. J. Zool. 228, 81–101.CrossRefGoogle Scholar
  21. Hart, J.S., 1971. Rodents. In: Whittlow, G.C. (Ed.), Comparative Physiology of Ther-moregulation. Academic Press, pp. 1–49.Google Scholar
  22. Hille, S.M., Mortelliti, A., 2010. Microhabitat partitioning of Apodemus flavicollis and Myodes glareolus in the sub-montane alps: a preliminary assessment. Hystrix 21, 157–163.Google Scholar
  23. Johannesen, E., Aars, J., Andreassen, H.P., Ims, R.A., 2003. A demographic analysis of vole population responses to fragmentation and destruction of habitat. Pop. Ecol. 45, 47–58.Google Scholar
  24. Kalela, O., 1957. Regulation of reproduction rate in subarctic populations of the vole Clethrionomys rufocanus (sund.). Ann. Acad. Sci. Fenn. A IV 34, 1–60.Google Scholar
  25. Koivunen, V., Korpimäki, E., Hakkarainen, H., Norrdahl, K., 1996. Prey choice of Tengmalm’s owls (Aegolius funereus funereus): preference for substandard individuals? Can. J. Zool. 74, 816–823.Google Scholar
  26. Körner, C., 2007. The use of ‘altitude’ in ecological research. Trends Ecol. Evol. 22, 569–574.PubMedCrossRefPubMedCentralGoogle Scholar
  27. Lack, D., 1954. The Natural Regulation of Animal Numbers. Clarendon, Oxford, UK.Google Scholar
  28. Lande, R., 1993. Risksofpopulationextinction from demographicandenvironmental stochasticity and random catastrophes. Am. Nat. 142, 911–927.PubMedCrossRefPubMedCentralGoogle Scholar
  29. Lande, R., Enden, S., Saether, B.E., 2003. Stochastic Population Dynamics in Ecology and Conservation. Oxford University Press, Oxford, UK.CrossRefGoogle Scholar
  30. Leirs, H., Stenseth, N.C., Nichols, J.D., Hines, J.E., Verhagen, R., Verheyen, W., 1997. Stochastic seasonality and nonlinear density-dependent factors regulate population size in an African rodent. Nature 389, 176–180.PubMedCrossRefGoogle Scholar
  31. Mazuurkiewicz, M., 1986. The influence of undergrowth distribution on utilization of space by bank vole populations. Acta Theriol. 31, 207–227.CrossRefGoogle Scholar
  32. Millar, J.S., Innes, D.G.L., 1985. Breeding by Peromyscus maniculatus over an eleva-tional gradient. Can. J. Zool. 63, 124–129.CrossRefGoogle Scholar
  33. Millar, J.S., Havelka, M.A., Sharma, S., 2004. Nest mortality in a population of small mammals. Acta Theriol. 49, 269–273.CrossRefGoogle Scholar
  34. Murie, J.O., Boag, D.A., Kivett, V.K., 1980. Litter size in Columbian ground squirrels (Spermophilus columbianus). J. Mamm. 6, 237–244.CrossRefGoogle Scholar
  35. Norrdahl, K., Korpimäki, E., 2002. Changes inpopulation structure and reproduction during a 3-yr population cycle of voles. Oikos 96, 331–345.CrossRefGoogle Scholar
  36. Oli, M.A., Dobson, F.S., 2003. The relative importance of life-history variables to population growth rate in mammals: Cole’s prediction revisited. Am. Nat. 161, 422–440.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Pratt, N.L., Barrett, G.W., 2012. Timing of breeding in Ochrotomys nuttalli and Peromyscus leucopus is related to a latitudinal isotherm. Landsc. Ecol. 27, 599–610.CrossRefGoogle Scholar
  38. R Development Core Team, 2012. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria https://doi.org/www.R-project.org
  39. Pucek, Z., Jedrzejewski, W., Jedrzejewska, B., Pucek, M., 1993. Rodent population dynamics in a primeval deciduous forest (Bialowieza National Park) in relation to weather, seed crop, and predation. Acta Theriol. 38, 199–232.CrossRefGoogle Scholar
  40. Rödel, H.G., Bora, A., Kaetzke, P., Khaschei, M., Hutzelmeyer, H., von Holst, D., 2004. Over-winter survival in subadult European rabbits: weather effects, density dependence, and the impact of individual characteristics. Oecologia 140, 566–576.PubMedCrossRefGoogle Scholar
  41. Rödel, H.G., Starkloff, A., Seltmann, M.W., Prager, G., von Holst, D., 2009. Causes and predictors of nest mortality in a European rabbit population. Mamm. Biol. 74, 198–209.CrossRefGoogle Scholar
  42. Rödel, H.G., Dekker, J.J.A., 2012. Impact of different weather factors on population dynamics oftwo lagomorph species, based onhunting bag records. Eur. J. Wildl. Res. 58, 923–932.CrossRefGoogle Scholar
  43. Smith, J.E., Batzli, G.O., 2006. Dispersal and mortality of prairie voles (Microtus ochro-gaster) in fragmented landscapes: a field experiment. Oikos 112, 209–2017.CrossRefGoogle Scholar
  44. Speakman, J.R., 2008. The physiological costs of reproduction in small mammals. Phil. Trans. R. Soc. B 363, 375–398.PubMedCrossRefGoogle Scholar
  45. Stenseth, N.C., Viljugrein, H., Jedrzejewska, B., Mysterud, A., Pucek, Z., 2002. Population dynamics of Clethrionomys glareolus and Apodemus flavicollis: seasonal components of density dependence and density independence. Acta Theriol. 47, 39–67.CrossRefGoogle Scholar
  46. Tkadlec, E., Stenseth, N.C., 2001. A new geographic gradient in vole population dynamics. Proc. R. Soc. B 268, 1547–1552.PubMedCrossRefGoogle Scholar
  47. Tkadlec, E., Zejda, J., 1998. Small rodent population fluctuations: the effects of age structure and seasonality. Evol. Ecol. 12, 191–210.CrossRefGoogle Scholar
  48. Turchin, P., 1999. Population regulation: a synthetic view. Oikos 84, 153–159.CrossRefGoogle Scholar
  49. Zammuto, R.M., Millar, J.S., 1985. Environmental predictability, variability and Sper-mophilus columbianus life history over an elevational gradient. Ecology 66, 1784–1794.CrossRefGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2014

Authors and Affiliations

  1. 1.Institute of Wildlife Biology and Game ManagementUniversity of Natural Resources and Life ScienceViennaAustria
  2. 2.Laboratoire d’Ethologie Expérimentale et Comparée E.A. 4443 (LEEC)Université Paris 13, Sorbonne Paris CitéVilletaneuseFrance

Personalised recommendations