Advertisement

Mammalian Biology

, Volume 79, Issue 2, pp 157–160 | Cite as

Sexual size monomorphism in the crested porcupine (Hystrix cristata)

  • Emiliano MoriEmail author
  • Sandro Lovari
Short Communication

Abstract

Amongst mammals, female-biased sexual size dimorphism (SSD) is rare and it occurs mostly in species where reduced male intrasexual competition is present. Reverse SSD has been reported for Old World porcupines Hystrix spp. We compared weight and six metric body measurements of 40 male and 42 female crested porcupines from Southern Tuscany, Italy. No significant difference was observed between sexes. The monogamous mating system of porcupines, sharing parental care, together with no evidence of territoriality, militate against previous claims of SSD presence, probably due to small sample size and inappropriate statistical analyses.

Keywords

Hystrix cristata Sexual size dimorphism Monogamy Parental care 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alkon, P.U., Saltz, D., 1985. Investigating the field behavior of crested porcupine (Hystrix indica). In: Brooks, R.P. (Ed.), Nocturnal Mammals: Techniques for Study. School of Forest Resources, Pennsylvania State University, University Park, pp. 19–34 (Research Paper no. 48).Google Scholar
  2. Alkon, P.U., Saltz, D., 1988. Influence of season and moonlight on temporal activity patterns of Indian crested porcupines (Hystrix indica). J. Mammal. 69, 71–80.CrossRefGoogle Scholar
  3. Blackenhorn, W.U., Preziosi, R.F., Fairbairn, D.J., 1995. Time and energy constraints and the evolution of sexual size dimorphism – to eat or to mate? Evol. Ecol. 9, 369–381.Google Scholar
  4. Clutton-Brock, T.H., 2007. Sexual selection in males and females. Science 318, 1882–1885.PubMedCrossRefPubMedCentralGoogle Scholar
  5. Clutton-Brock, T.H., 2009. Sexual selection in females. Anim. Behav. 77, 3–11.CrossRefGoogle Scholar
  6. Clutton-Brock, T.H., Harvey, P.H., 1978. Mammals, resources and reproductive strategies. Nature 273, 191–195.PubMedCrossRefPubMedCentralGoogle Scholar
  7. Corbet, N.U., Van Aarde, R.J., 1996. Social organization and space use in the Cape porcupine in a southern African savanna. Afr. J. Ecol. 34, 1–14.CrossRefGoogle Scholar
  8. Corsini, M.T., Lovari, S., Sonnino, S., 1995. Temporal activity patterns of crested porcupines Hystrix cristata. J. Zool., London 236, 43–54.CrossRefGoogle Scholar
  9. Engh, A.L., Esch, K., Smale, L., Holekamp, K.E., 2000. Mechanisms of maternal rank inheritance in the spotted hyaena, Crocuta crocuta. Anim. Behav. 60, 323–332.PubMedCrossRefGoogle Scholar
  10. Felicioli, A., Grazzini, A., Santini, L., 1997. The mounting and copulation behavior of the crested porcupine Hystrix cristata. Ital. J. Zool. 64, 155–161.CrossRefGoogle Scholar
  11. Festa-Bianchet, M., King, W.J., Jorgenson, J.T., Smith, K.G., Wishart, W.D., 1996. The development of sexual dimorphism: seasonal and lifetime mass changes in bighorn sheep. Can. J. Zool. 74, 330–342.CrossRefGoogle Scholar
  12. Filibeck, U., Locasciulli, O., Procacci, M., Tinelli, A., Tinelli, P., 1981. Il trappolamento come tecnica di ricerca per studi di popolazioni dell’istrice: sperimentazione ed osservazioni nel Parco Regionale della Maremma. Atti Soc. Ital. Sci. Nat. 122, 204–216.Google Scholar
  13. Fischer, D.O., Double, M.C., Blomberg, S.P., Jennions, M.D., Cockburn, A., 2006. Post-mating sexual selection increases lifetime fitness of polyandrous females in the wild. Lett. Nat. 444, 89–91.CrossRefGoogle Scholar
  14. Gaigher, I.G., Currie, M.H., 1979. Preliminary Studies on the Ecology of the Southern African Porcupine, Hystrix africaeaustralis. Department of Nature and Environmental Conservation, Province Administration of the Cape of Good Hope, South Africa, pp. 55–69 (Research report).Google Scholar
  15. Ghiselin, M.T., 1974. The Economy of Nature and the Evolution of Sex. University of California Press, Berkeley, USA.Google Scholar
  16. Glucksman, A., 1974. Sexual dimorphism in Mammals. Biol. Rev. 49, 423–475.CrossRefGoogle Scholar
  17. Hedrick, A.V., Temeles, E.J., 1989. The evolution of sexual dimorphism in animals: hypotheses and tests. Trends Ecol. Evol. 4, 136–138.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Isaac, J.L., 2005. Potential causes and life-history consequences of sexual size dimorphism in mammals. Mammal Rev. 35, 101–115.CrossRefGoogle Scholar
  19. Karubian, J., Swaddle, J.P., 2001. Selection on females can create larger males. Proc. R. Soc. Lond. Ser. B-Biol. Sci. 268, 725–728.CrossRefGoogle Scholar
  20. Key, C., Ross, C., 1999. Sexdifferencesinenergyexpenditureinnon-humanprimates. Proc. R. Soc. Lond. Ser. B-Biol. Sci. 266, 1655–1661.CrossRefGoogle Scholar
  21. King, W.J., Allainé, D., 2002. Social, maternal, and environmental influences onrepro-ductive success in female Alpine marmots (Marmota marmota). Can. J. Zool. 80, 2137–2143.CrossRefGoogle Scholar
  22. Kleiman, D.G., 1977. Monogamy in mammals. Q. Rev. Biol. 52, 39–69.CrossRefGoogle Scholar
  23. Komers, P.E., Brotherton, P.N.M., 1997. Female space use is the best predictor of monogamy in mammals. Proc. R. Soc. Lond. B 264, 1261–1270.CrossRefGoogle Scholar
  24. Lammers, A.R., Dziech, H.A., German, R.Z., 2001. Ontogeny of sexual dimorphism in Chinchilla lanigera (Rodentia: Chinchillidae). J. Mammol. 82, 179–189.CrossRefGoogle Scholar
  25. Le Boeuf, B.J., 1974. Male–male competition and reproductive success in elephant seals. Am. Zool. 14, 163–176.CrossRefGoogle Scholar
  26. Lisòn, F., Haz, A., Gonzalez-Revelles, C., Calvo, J.F., 2012. Sexual size dimorphism in greater mouse-eared bat Myotis myotis (Chiroptera: Vespertilionidae) from a Mediterranean region. Acta Zool.,  https://doi.org/10.1111/azo.12012.CrossRefGoogle Scholar
  27. Loison, A., Gaillard, J.M., Pèlabon, C., Yoccoz, N.G., 1999. What shape sexual size dimorphism in ungulates? Evol. Ecol. Res. 1, 611–633.Google Scholar
  28. Massolo, A., Sforzi, A., Lovari, S., 2003. Chemical immobilizationof crested porcupine with Tiletamine HCl and Zolazepam HCl (Zoletil®) underfield condition.J.Wildl. Dis. 39, 727–731.Google Scholar
  29. Macdonald, D., Barrett, P., 1993. Mammals of Britain & Europe. Harper Collins Edits, London, UK.Google Scholar
  30. Mohr, E., 1965. In: Westarp Wissenschaften (Ed., Altweltliche Stachelschweine. A. Ziemsen Verlag, Wittenburg Lutherstadt, Germany.Google Scholar
  31. Monetti, L., Massolo, A., Sforzi, A., Lovari, S., 2005. Site selection and fidelity by crested porcupine for denning. Ethol. Ecol. Evol. 17, 149–159.CrossRefGoogle Scholar
  32. Moors, P.J., 1980. Sexual dimorphism in the body size of mustelids (Carnivora): the roles of food habits and breeding systems. Oikos 34, 147–158.CrossRefGoogle Scholar
  33. Morris, D.J., Van Aarde, R.J., 1985. Sexual behavior of the female porcupine, Hystrix africaeaustralis. Horm. Behav. 19, 400–412.PubMedCrossRefPubMedCentralGoogle Scholar
  34. Niethammer, J., 1978. Hystrix cristata Linnaeus 1758. Stachelschwein. In: Nietham-mer, J., Krapp, F. (Eds.), Handbuch der Säugetiere Europas, Band 1. Akademisch Verlages, Wiesbaden, pp. 588–605.Google Scholar
  35. Nowak, R., 1991. Walker’s Mammals of the World. Johns Hopkins University Press, Baltimore.Google Scholar
  36. Pigozzi, G., 1987. Female-biased sexual size dimorphism in the crested porcupine (Hystrix cristata L.). Bollett. Zool. 54, 255–259.CrossRefGoogle Scholar
  37. Pigozzi, G., 1997. On agonistic interactions between female crested porcupine (Hys-trix cristata). Atti Soc. Ital. Sci. Nat. Mus. Civ. Stor. Nat. Milano 137, 127–130.Google Scholar
  38. Ralls, K., 1976. Mammals in which females are larger than males. Q. Rev. Biol. 51, 245–276.PubMedCrossRefPubMedCentralGoogle Scholar
  39. Ralls, K., 1977. Sexual dimorphism in mammals: avian models and unanswered questions. Am. Nat. 111, 917–938.CrossRefGoogle Scholar
  40. Saltz, D., Alkon, P.U., 1989. On the spatial behavior of Indian crested porcupines (Hystrix indica). J. Zool., London 217, 255–266.CrossRefGoogle Scholar
  41. Schulte-Hostedde, A.E., Millar, J.S., Hickling, G.J., 2001. Sexual dimorphism in body composition of small mammals. Can. J. Zool. 79, 1016–1020.CrossRefGoogle Scholar
  42. Sever, Z., 1985. Studies onthe Biologyof the Indian Crested Porcupine (Hystrix indica) in the Coastal Plain of Israel. University of Tel Aviv (MSc dissertation).Google Scholar
  43. Sever, Z., Mendelssohn, H., 1988. Copulation as a possible mechanism to maintain monogamy in porcupines, Hystrix indica. Anim. Behav. 36, 1541–1542.CrossRefGoogle Scholar
  44. Sever, Z., Mendelssohn, H., 1989. Paternal behavior in porcupines. Isr. J. Zool. 36, 172–173.Google Scholar
  45. Sever, Z., Mendelssohn, H., 1991. Spatial movement patterns of porcupines (Hystrix indica). Mammalia 55, 187–205.CrossRefGoogle Scholar
  46. Smithers, R.H.N., 1983. The Mammals of Southern African Subregion. University of Pretoria Press, South Africa.Google Scholar
  47. Sokal, R.R., Rohlf, F.J., 2012. Biometry, Third ed. W.H. Freeman and Company, New York.Google Scholar
  48. Trivers, R.L., 1972. Parental investment and sexual selection. In: Campbell, B. (Ed.), Sexual Selection and the Descent of Man. Aldine Publishing, Chicago, pp. 136–179.Google Scholar
  49. Van Aarde, R.J., 1985. Age determination of Cape porcupines, Hystrix africaeaustralis. S. Afr. J. Zool. 20, 232–236.Google Scholar
  50. Van Aarde, R.J., 1987. Demography of a Cape porcupines, Hystrix africaeaustralis, population. J. Zool., London 213, 205–212.CrossRefGoogle Scholar
  51. Van Aarde, R.J., Skinner, J.D., 1986. Reproductive biology of the male Cape porcupines, Hystrix africaeaustralis. J. Reprod. Fertil. 76, 545–552.PubMedCrossRefPubMedCentralGoogle Scholar
  52. Van Aarde, R.J., Van Wyk, V., 1991. Reproductive inhibition in the Cape porcupines, Hystrix africaeaustralis. J. Reprod. Fertil. 92, 13–19.PubMedCrossRefPubMedCentralGoogle Scholar
  53. Weingrill, T., Lycett, J.E., Barrett, L., Hill, R.A., Henzi, S.P., 2003. Male consortship behavior in chacma baboons: the role of demographic factors and female con-ceptive probabilities. Behavior 140, 405–427.CrossRefGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2014

Authors and Affiliations

  1. 1.Department of Life SciencesUniversity of SienaSienaItaly

Personalised recommendations