Mammalian Biology

, Volume 78, Issue 6, pp 397–405 | Cite as

Metabolic, hygric and ventilatory physiology of the red-tailed phascogale (Phascogale calura; Marsupialia, Dasyuridae): Adaptations to aridity or arboreality?

  • Hannah Pusey
  • Christine E. CooperEmail author
  • Philip C. Withers
Original Investigation


The red-tailed phascogale is a small arboreal dasyurid marsupial that inhabits semi-arid to arid regions of Western Australia’s wheat belt. Its body mass (34.7 g) is only ~ 15% of that predicted based on its phylogenetic position among other dasyuromorphs; we interpret this as an adaptation to its scansorial and semi-arid/arid lifestyle. The standard physiology of this species at a thermoneutral ambient temperature of 30 °C conforms to that of other dasyurid marsupials; body temperature (34.7 ± 0.37 °C), basal metabolic rate (0.83 ± 0.076mLO2g-1 h-1), evaporative water loss (1.68±0.218mgH2Og-1 hr-1) and wet thermal conductance (3.8±0.26Jg-1 hr-1 °C-1) all fall within the 95% predication limits for the respective allo-metric relationships for other dasyurid species. Thermolability confers an energy savings at low Ta and water savings at high Ta. Torpor, observed at low Ta, was found to be more beneficial for energy savings than for water economy. The red-tailed phascogale therefore has a physiology suitable for the challenges of arid environments without any obvious requirement for adaptations to its scansorial lifestyle, other than its considerably lower-than-expected body mass.


Marsupial Dasyuridae Energetics Water balance Ventilation 



basal metabolic rate


thermal conductance


dry thermal conductance




wet thermal conductance


degrees celsius


evaporative heat loss


oxygen extraction


evaporative quotient


evaporative water loss


ventilatory frequency














metabolic heat production


metabolic rate


minimum variance unbiased estimator


metabolic water production


number of individuals


number of measurements


point of relative water economy


respiratory exchange ratio


relative humidity


relative water economy


standard error


ambient temperature


body temperature


rate of carbon dioxide production


rate of oxygen consumption


Visual Basic


minute volume


tidal volume


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bininda-Emonds, O.R.P., Cardillo, M., Jones, K.E., MacPhee, R.D.E., Beck, R.M.D., Grenyer, R., Price, S.A.R., Vos, A., Gittleman, J.L., Purvis, A., 2007. The delayed rise of present-day mammals. Nature 446, 507–512.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Bozinovic, F., Rosenmann, M., 1988. Comparative energetics of South American cricetid rodents. Comp. Biochem. Physiol. A 91, 195–202.CrossRefGoogle Scholar
  3. Bradley, A.J., 1997. Reproduction and life history in the red-tailed phascogale, Phascogale calura (Marsupialia: Dasyuridae): the adaptive-stress senescence hypothesis. J. Zool. Lond. 241, 739–755.CrossRefGoogle Scholar
  4. Bradley, A.J., Foster, W.K., Taggart, D.A., 2008. Red-tailed phascogale (Phascogale calura). In: Van Dyck, S., Strahan, R. (Eds.), The Mammals of Australia. Sydney, New Holland, pp. 101–102.Google Scholar
  5. Careau, V., Morand-Ferron, J., Thomas, D., 2007. Basal metabolic rate of canids from hot deserts to cold arctic climates. J. Mammal. 88, 394–400.CrossRefGoogle Scholar
  6. Chappell, M.A., Dawson, T.J., 1994. Ventilatory accomodation of changing oxygen consumption in dasyurid marsupials. Physiol. Zool. 67, 418–437.CrossRefGoogle Scholar
  7. Cheverud, J.M., Dow, M.M., 1985. An autocorrelation analysis of genetic variation due to lineal fission in social groups of Rhesus monkeys. Am. J. Physical Anthropol. 67, 113–121.CrossRefGoogle Scholar
  8. Cooper, C.E., Withers, P.C., 2004. Ventilatory physiology of the numbat (Myrmecobius fasciatus). J. Comp. Physiol. B 174, 107–111.CrossRefGoogle Scholar
  9. Cooper, C.E., Withers, P.C., 2006. Numbats and aardwolves- how low is low? A reaffirmation of the need for statistical rigour in evaluating regression predictions. J. Comp. Physiol. B 176, 623–629.CrossRefGoogle Scholar
  10. Cooper, C.E., Withers, P.C., 2010a. Effect of sampling regime on estimation of basal metabolic rate and standard evaporative water loss using flow-through respirometry. Physiol. Biochem. Zool. 83, 385–393.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Cooper, C.E., Withers, P.C., 2010b. Comparative physiology of Australian quolls (Dasyurus; Marsupialia). J. Comp. Physiol. B 180, 857–868.CrossRefGoogle Scholar
  12. Degabriele, R., Dawson, T.J., 1979. Metabolism and heat balance of an arboreal marsupial, the koala (Phascolarctos cinereus). J. Comp. Physiol. B 134, 293–301.CrossRefGoogle Scholar
  13. Elgar, M.A., Harvey, P.H., 1987. Basal metabolic rates in mammals: allometry, phy-logeny and ecology. Func. Ecol. 1, 25–36.CrossRefGoogle Scholar
  14. Geiser, F., 1994. Hibernation and daily torpor in marsupials - a review. Aust. J. Zool. 42, 1–16.CrossRefGoogle Scholar
  15. Geiser, F., 2003. Thermal biology and energetics of carnivorous marsupials. In: Jones, M., Dickman, C, Archer, M. (Eds.), Predators with Pouches: The Biology of Carnivorous Marsupials. CSIRO, Melbourne, Australia, pp. 238–253.Google Scholar
  16. Geiser, F., 2004. The role of torpor in the life of Australian arid zone mammals. Aust. Mamm. 26, 125–134.CrossRefGoogle Scholar
  17. Geiser, F., Baudinette, R.V., 1990. The relationship between body mass and rate of rewarming from hibernation and daily torpor in mammals. J. Exp. Biol. 151, 349–359.PubMedGoogle Scholar
  18. Geiser, F., Holloway, J.C., Kortner, G., Maddocks, T.A., Turbill, C., Brigham, R.M., 2000. Do patterns of torpor differ between free-ranging and captive mammals and birds? In: Heldmaier, G., Klingensper, M. (Eds.), Life in the Cold. 11th International Hibernation Symposium. Springer Verlag, Berlin.Google Scholar
  19. Green, B., King, D., Bradley, A., 1989. Water and energy metabolism and estimated food consumption rates of free-living Wambengers, Phascogale calura (Marsupialia: Dasyuridae). Aust. Wildl. Res. 16, 501–507.CrossRefGoogle Scholar
  20. Hanna, J.B., Schmitt, D., Griffin, T.M., 2008. The energetic cost of climbing in primates. Science 320, 898.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Harvey, P.H., Pagel, M.D., Rees, J.A., 1991. Mammalian metabolism and life histories. Am. Nat. 137, 556–566.CrossRefGoogle Scholar
  22. Hayssen, V., Lacy, C.R., 1985. Basal metabolic rates in mammals: taxonomic differences in the allometry of BMR and body mass. Comp. Biochem. Physiol. A 81, 741–754.CrossRefGoogle Scholar
  23. Hayes, J.P., Shonkwiler, J.S., 2006. Allometry, antilog transformations, and the peril of prediction on the original scale. Physiol. Biochem. Zool. 79, 665–674.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Hayes, J.P., Shonkwiler, J.S., 2007. Erratum: allometry, antilog transformations, and the perils of prediction on the original scale. Physiol. Biochem. Zool. 80, 556.CrossRefGoogle Scholar
  25. Hayes, J.P., Speakman, J.R., Racey, P.A., 1992. Sampling bias in respirometry. Physiol. Zool. 65, 604–619.CrossRefGoogle Scholar
  26. Hinds, D.S., MacMillen, R.E., 1986. Scaling of evaporative water loss in marsupials. Physiol. Zool. 59, 1–9.CrossRefGoogle Scholar
  27. Kitchener, D.J., 1981. Breeding, diet and habitat preference of Phascogale calura (Gould, 1844) (Marsupialia: Dasyuridae) in the southern wheat belt, Western Australia. Records Western Aust. Mus. 9, 173–186.Google Scholar
  28. Larcombe, A., 2002. Effects of temperature on metabolism, ventilation and oxygen extraction in the southern brown bandicoot Isoodon obesulus (Marsupialia: Peramelidae). Physiol. Biochem. Zool. 75, 405–411.PubMedCrossRefPubMedCentralGoogle Scholar
  29. Lovegrove, B.G., 2000. The zoogeography of mammalian basal metabolic rate. Am. Nat. 156, 201–219.PubMedCrossRefPubMedCentralGoogle Scholar
  30. Lovegrove, B.G., 2003. The influence of climate on the basal metabolic rate of small mammals: a slow-fast metabolic continuum. J. Comp. Physiol. B 173, 87–112.Google Scholar
  31. MacMillen, R.E., 1983. Adaptive physiology of heteromyid rodents. Great Basin Nat. Mem. 7, 65–90.Google Scholar
  32. MacMillen, R.E., Nelson, J.E., 1969. Bioenergetics and body size in dasyurid marsupials. Am. J. Physiol. 217, 1246–1251.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Malan, A., 1973. Ventilation measured by body plethysmography in hibernating mammals and poikilotherms. Respir. Physiol. 17, 32–44.PubMedCrossRefPubMedCentralGoogle Scholar
  34. McNab, B.K., 1986a. The influence of food habits on the energetics of eutherian mammals. Ecol. Mono. 56, 1–19.CrossRefGoogle Scholar
  35. McNab, B.K., 1986b. Food habits, energetics, and the reproduction of marsupials. J. Zool. (Lond.) 208, 595–614.CrossRefGoogle Scholar
  36. McNab, B.K., 2002a. The Physiological Ecology of Vertebrates: A View from Energetics. Cornell University Press, Ithaca.Google Scholar
  37. McNab, B.K., 2002b. Short-term energy conservation in endotherms in relation to body mass, habits, and environment. J. Thermal Biol. 27, 459–466.CrossRefGoogle Scholar
  38. McNab, B.K., 2005. Uniformity in the basal metabolic rate of marsupials: its causes and consequences. Rev. Chil. Hist. Nat. 78, 183–198.Google Scholar
  39. McNab, B.K., 2008. An analysis of the factors that influence the level and scaling of mammalian BMR. Comp. Biochem. Physiol. A 151, 5–28.CrossRefGoogle Scholar
  40. Menkhorst, P., Knight, F., 2001. A Field Guide to the Mammals of Australia. Oxford University Press, South Melbourne.Google Scholar
  41. Munn, A.J., Cooper, C.E., Russell, B., Dawson, T.J., McLeod, S.R., Maloney, S.K., 2012. Energy and wateruse by invasive goats (Capra hircus) in an Australian rangeland, and a caution against using broad-scale allometry to predict species-specific requirements. Comp. Biochem. Physiol. A 161, 216–229.CrossRefGoogle Scholar
  42. Munn, A.J., Kern, P., McAllan, B.M., 2010. Coping with chaos: unpredictable food supplies intensify torpor use in an arid-zone marsupial, the fat-tailed dunnart (Sminthopsis crassicaudata). Naturwissenschaften 97, 601–605.PubMedCrossRefPubMedCentralGoogle Scholar
  43. Muñoz-Garcia, A., Williams, J.B., 2005. Basal metabolic rate in carnivores is associated with diet after controlling for phylogeny. Physiol. Biochem. Zool. 78, 1039–1056.PubMedCrossRefPubMedCentralGoogle Scholar
  44. Page, A.J., Cooper, C.E., Withers, P.C., 2011. Effects of experiment start time and duration on measurement of standard physiological variables. J. Comp. Physiol. B181, 657–665.CrossRefGoogle Scholar
  45. Rohlf, F.J., 2001. Comparative methods for the analysis of continuous variables: geometric interpretations. Evolution 55, 2143–2160.PubMedCrossRefGoogle Scholar
  46. Roth, V.L., 1990. Insular dwarf elephants: a case study in body mass estimation and ecological inference. In: Damuth, J., MacFadden, B.J. (Eds.), Body Size in Mammalian Paleobiology. Estimation and Biological Implications. Cambridge University Press, Cambridge, pp. 151–179.Google Scholar
  47. Schmidt, S., Withers, P.C., Cooper, C.E., 2009. Metabolic, ventilatory and hygric physiology of the chuditch (Dasyurus geoffroii; Marsupialia, Dasyuridae). Comp. Biochem. Physiol. A 154, 92–97.CrossRefGoogle Scholar
  48. Stannard, H., Caton, W., Old, J., 2010. The diet and reproduction of the red-tailed phascogale in a trial translocation at Alice-Springs Desert Park, Northern Territory, Australia. J. Zool. (Lond.) 280, 326–331.CrossRefGoogle Scholar
  49. Szewczak, J.M., Powell, F.L., 2003. Open-flow plethysmography with pressure-decay compensation. Respir. Physiol. Neurobiol. 134, 57–67.PubMedCrossRefGoogle Scholar
  50. Tomlinson, S., Withers, P.C., Maloney, S.K., 2012. Flexibility in thermoregulatiory physiology of two dunnarts, Sminthopsis macroura and Sminthopsis ooldea (Marsupialia; Dasyuridae). J Exp. Biol. 215, 2236–2246.PubMedCrossRefPubMedCentralGoogle Scholar
  51. Warnecke, L., Cooper, C.E., Geiser, F., Withers, P.C., 2010. Environmental physiology of a small marsupial inhabiting arid floodplains. Comp. Biochem. Physiol. 157, 73–78.CrossRefGoogle Scholar
  52. White, C.R., 2003. The influence of foraging mode and arid adaptation on the basal metabolic rates of burrowing mammals. Physiol. Biochem. Zool. 76, 122–134.PubMedCrossRefPubMedCentralGoogle Scholar
  53. Williams, J.B., Lenain, D., Ostrowski, S., Tieleman, B.I., 2002. Energy expenditure and water flux of Rüppell’s foxes in Saudi Arabia. Physiol. Biochem. Zool. 75, 33–42.CrossRefGoogle Scholar
  54. Williams, J.B., Muñoz-Garcia, A., Ostrowski, S., Tieleman, B.I., 2004. A phylogenetic analysis of basal metabolism, total evaporative water loss, and life-history among foxes from desert and mesic regions. J. Comp. Physiol. B 174, 29–39.CrossRefGoogle Scholar
  55. Withers, P.C., 1992. Comparative Animal Physiology. Saunders College Publishing, Philadelphia.Google Scholar
  56. Withers, P.C., 2001. Design, calibration and calculation for flow-through respirometry systems. Aust. J. Zool. 49, 455–461.CrossRefGoogle Scholar
  57. Withers, P.C., Cooper, C.E., 2009a. Thermal, metabolic, and hygric physiology of the little red kaluta, Dasykaluta rosamondae (Dasyuromorphia: Dasyuridae). J. Mammal. 90, 752–760.CrossRefGoogle Scholar
  58. Withers, P.C., Cooper, C.E., 2009b. Thermal, metabolic, hygric and ventilatory physiology of the sandhill dunnart (Sminthopsis psammophila: Marsupialia, Dasyuridae). Comp. Biochem. Physiol. A 153, 317–323.CrossRefGoogle Scholar
  59. Withers, P.C., Cooper, C.E., 2011. Using a priori contrasts for multivariate repeated-measures ANOVA to analyze thermoregulatory responses of the dibbler (Parantechinus apicalis; Marsupialia, Dasyuridae). Physiol. Biochem. Zool. 84, 514–521.PubMedCrossRefGoogle Scholar
  60. Withers, P.C., Cooper, C.E., Nespolo, R.F., 2012. Evaporative water loss, relative water economy and evaporative partitioning of a heterothermic marsupial, the monito del monte (Dromiciops gliroides). J. Exp. Biol. 215, 2806–2813.CrossRefGoogle Scholar
  61. Withers, P.C., Cooper, C.E., Larcombe, A., 2006. Environmental correlates of physiological variables in marsupials. Physiol. Biochem. Zool. 79, 437–453.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2013

Authors and Affiliations

  • Hannah Pusey
    • 1
    • 2
  • Christine E. Cooper
    • 1
    • 3
    Email author
  • Philip C. Withers
    • 1
    • 3
  1. 1.Environment and AgricultureCurtin UniversityWestern AustraliaAustralia
  2. 2.Life and Environmental SciencesDeakin UniversityBurwoodAustralia
  3. 3.Animal BiologyUniversity of Western AustraliaCrawleyAustralia

Personalised recommendations