Mammalian Biology

, Volume 78, Issue 4, pp 267–275 | Cite as

Geographic variation in the greater Japanese shrew-mole, Urotrichus talpoides: Combining morphological and chromosomal patterns

  • Laura A. B. WilsonEmail author
Original Investigation


Although much information on the species dynamics of small mammals may be gleaned from the integration of morphological and molecular data sets, the two are not routinely combined when species boundaries and definitions are investigated. The greater Japanese shrew-mole (Urotrichus talpoides) presents a rare example of intraspecific and geographical euchromatic chromosomal variation. In this study a combination of 2D landmark-based and outline-based geometric morphometric methods were used to provide the first quantitative examination of variation in skull morphology occurring between populations of U. talpoides. Geographic variation was found to be most conspicuous in ventral and dorsal cranial morphology, and less evident for outline-based analyses of the dentary, thereby indicating differing magnitudes of skeletal plasticity associated with geographic variation in each system. Both ventral and dorsal cranial morphology differed significantly between shrew-moles from western and eastern Honshu, in agreement with previously identified chromosomal variation boundaries. Inclusion of other island populations revealed shape differences between shrew-moles in Kyushu, Tsushima and North Honshu. These results lend general support for the unification of morphological and chromosomal data when assessing species boundaries.


Geometric morphometrics Karyotype race Honshu Cranium Dentary 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, D.C., Rohlf, F.J., Slice, D.E., 2004. Geometric morphometrics: ten years of progress following the ‘revolution’. Ital. J. Zool. 71, 5–16.CrossRefGoogle Scholar
  2. Anders, U., von Koenigswald, W., Ruf, I., Smith, B.H., 2011. Generalized individual dental ages for fossil and extant placental mammals. Paläontol. Z. 85, 321–339.CrossRefGoogle Scholar
  3. Arnqvist, G., Martensson, T., 1998. Measurement error in geometric morphometrics: empirical strategies to assess and reduce its impact on measures of shape. Acta Zool. Hung. 44, 73–96.Google Scholar
  4. Badyaev, A.V., Foresman, K.R., Young, R.L., 2005. Evolution of morphological integration: developmental accommodation of stress-induced variation. Am. Nat. 166, 382–395.PubMedCrossRefPubMedCentralGoogle Scholar
  5. Barrow, E., MacLeod, N., 2008. Shape variation in the mole dentary. Zoo. J. Linn. Soc. 153, 187–211.CrossRefGoogle Scholar
  6. Bookstein, F.L., 1991. Morphometric Tools for Landmark Data. Cambridge University Press, Cambridge.Google Scholar
  7. Caumul, R., Polly, P.D., 2005. Phylogenetic and environmental components of morphological variation: skull, dentary, and molar shape in marmots (Marmota, Rodentia). Evolution 59 (11), 2460–2472.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Cheverud, J.M., Hartman, S.E., Richtsmeier, J.T., Atchley, W.R., 1991. A quantitative genetic analysis of localized morphology in dentarys of inbred mice using finite-element scaling analysis. J. Craniofac. Genet. Dev. Biol. 11, 122–137.PubMedPubMedCentralGoogle Scholar
  9. Dryden, I.L., Mardia, K.V., 1998. Statistical Shape Analysis. Wiley, New York.Google Scholar
  10. Enlow, D.H., 1963. Principles of Bone Remodeling. Charles C. Thomas, Springfield, IL.Google Scholar
  11. Fernandes, F.A., Fornel, R., Cordeiro-Estrela, P., Freitas, T.R.O., 2009. Intra- and inter-specific skull variation in two sister species of the subterranean rodent genus Ctenomys(Rodentia, Ctenomyidae): coupling geometric morphometrics and chromosomal polymorphism. Zool. J. Linn. Soc. 155, 220–237.CrossRefGoogle Scholar
  12. Fornel, R., Cordeiro-Estrela, P., De Freitas, T.R.O., 2010. Skull shape and size variation in Ctenomys minutus (Rodentia: Ctenomyidae) in geographical, chromosomal polymorphism, and environmental contexts. Biol. J. Linn. Soc. 101, 705–720.CrossRefGoogle Scholar
  13. Gould, S.J., Johnston, R.F., 1972. Geographic variation. Annu. Rev. Ecol. Syst. 3, 457–498.CrossRefGoogle Scholar
  14. Hall, B.K., 2005. Bones and Cartilage: Developmental and Evolutionary Skeletal Biology. Elsevier Academic Press, Amsterdam.Google Scholar
  15. Hall, B.K., Herring, S.W., 1990. Paralysis and growth of the musculoskeletal system in the embryonic chick. J. Morphol. 206, 45–56.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Harada, M., Ando, A., Kimiyuki, T., Koyasu, K., 2001. Geographical variations in chromosomes of the greater Japanese shrew-mole Urotrichus talpoides (Mammalia: Insectivora). Zool. Sci. 18 (3), 433–442.CrossRefGoogle Scholar
  17. Imaizumi, Y., 1970. The Handbook of Japanese Land Mammals, vol. I. Shinshichosha, Tokyo (in Japanese).Google Scholar
  18. Jayat, J.P., Ortíz, P.E., Salazar-Bravo, J., Pardiñas, U.F.J., D’Elía, G., 2010. The Akodonboliviensisspecies group (Rodentia: Cricetidae: Sigmodontinae) in Argentina: species limits and distribution, with the description of a new entity. Zootaxa 2409, 1–61.CrossRefGoogle Scholar
  19. Kawada, S., Obara, Y., 1999. Reconsideration of the karyological relationship between two Japanese species of shrew-moles, Dymecodon pilirostris and Urotrichustalpoides. Zool. Sci. 16 (1), 167–174.CrossRefGoogle Scholar
  20. Kawada, S., Harada, M., Obara, Y., Kobayashi, S., Koyasu, K., Oda, S., 2001. Karyosystematic analysis of Japanese talpine moles in the genera Euroscaptor and Mogera (Insectivora, Talpidae). Zool. Sci. 18, 1003–1010.CrossRefGoogle Scholar
  21. Klingenberg, C.P., 2004. Integration, modules and development: molecules to morphology to evolution. In: Pigliucci, M., Preston, K. (Eds.), Phenotypic Integration: Studying the Ecology and Evolution of Complex Phenotypes. Oxford University Press, New York, pp. 213–230.Google Scholar
  22. Klingenberg, C.P., 2011. MorphoJ: an integrated software package for geometric morphometrics. Mol. Ecol. Resour. 11, 353–357.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Klingenberg, C.P., Leamy, L.J., Cheverud, J.M., 2004. Integration and modularity of quantitative trait locus effects on geometric shape in the mouse dentary. Genet-ics 166, 1909–1921.CrossRefGoogle Scholar
  24. Krieger, J.D., Guralnick, R.P., Smith, D.M., 2007. Generating empirically determined continuous measures of leaf shape for paleoclimate reconstruction. Palaois 22 (2), 212–219.CrossRefGoogle Scholar
  25. Kryštufek, B., Griffiths, H.I., 2000. Cranial differentiation in Neomys water shrews. Folia Zool. 49 (2), 81–87.Google Scholar
  26. Lanyon, L.E., 1984. Functional strain as a determinant for bone remodeling. Calcif. Tissue Int. 53, S102–S107.Google Scholar
  27. Loy, A., Capanna, E., 1998. A parapatric contact area between two species of moles: character displacement investigated through the geometric morphometrics of skull. Acta Zool. Hung. 44 (1–2), 151–164.Google Scholar
  28. MacLeod, N., 1999. Generalizing and extending the eigenshape method of shape space visualization and analysis. Paleobiology 25, 107–138.Google Scholar
  29. Mora, M., Olivares, A.I., Vassallo, A.I., 2003. Size, shape and structural versatility of the skull of the subterranean rodent Ctenomys (Rodentia, Caviomorpha): functional and morphological analysis. Biol. J. Linn. Soc. 78, 85– 96.CrossRefGoogle Scholar
  30. Moreira, J.C., de Oliveira, J.A., 2011. Evaluating diversification hypotheses in the South American cricetid Thaptomys nigrita (Lichtenstein, 1829) (Rodentia: Sigmodontinae): an appraisal of geographical variation based on different character systems. J. Mammal. Evol. 18, 201–214.CrossRefGoogle Scholar
  31. Motokawa, M., 2004. Phylogenetic relationships within the family Talpidae (Mammalia: Insectivora). J. Zool. Lond. 263, 147–157.CrossRefGoogle Scholar
  32. Muñoz- Muñoz, F., Sans-Fuentes, M.A., López-Fuster, M.J., Ventura, J., 2011. Evolutionary modularity of the mouse dentary: dissecting the effect of chromosomal reorganizations and isolation by distance in a Robertsonian system of Mus musculus domesticus. J. Evol. Biol. 24, 1763–1776.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Olson, L.E., Goodman, S.M., Yoder, A.D., 2004. Illumination of cryptic species boundaries in long-tailed shrew tenrecs (Mammalia: Tenrecidae; Mircrogale), with new insights into geographic variation and distributional constraints. Biol. J. Linn. Soc. 83, 1–22.CrossRefGoogle Scholar
  34. Polly, P.D., 2003. Paleophylogeography: the tempo of geographic differentiation in marmots (Marmota). J. Mammal. 84 (2), 369–384.CrossRefGoogle Scholar
  35. R Development Core Team, 2008. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
  36. Rieseberg, L.H., 2001. Chromosomal rearrangements and speciation. Trends Ecol. Evol. 16, 351–358.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Rohlf, F.J., 2010. tpsDig Version 2.16. Department of Ecology and Evolution, State University of New York at Stony Brook.Google Scholar
  38. Rot-Nikcevic, I., Downing, K.J., Hall, B.K., Kablar, B., 2007. Development of the mouse mandibles and clavicles in the absences of skeletal myogenesis. Histol. Histopathol. 22 (1), 51–60.PubMedPubMedCentralGoogle Scholar
  39. Sánchez-Villagra, M.R., Horovitz, I., Motokawa, M., 2006. A comprehensive morphological analysis of talpid moles (Mammalia) phylogenetic relationships. Cladistics 22, 59–88.CrossRefGoogle Scholar
  40. Simon, H.A., 1962. The architecture of complexity. Proc. Am. Philos. Soc. 106 (6), 467–482.Google Scholar
  41. Sites, J.W., Crandall, K.A., 1997. Testing species boundaries in biodiversity studies. Conserv. Biol. 11 (6), 1289–1297.CrossRefGoogle Scholar
  42. Tsuchiya, K., 1988. Cytotaxonomic studies of the family Talpidae from Japan. Honyurui Kagaku 28, 49–61 (in Japanese).Google Scholar
  43. von Cramon-Taubadel, N., Frazier, B.C., Lahr, M.M., 2007. The problem of assessing landmark error in geometric morphometrics: theory, methods, and modifications. Am. J. Phys. Anthropol. 134, 24–35.CrossRefGoogle Scholar
  44. White, M.J.D., 1978. Modes of Speciation. Freeman WH, Co, San Francisco.Google Scholar
  45. Wilson, L.A., MacLeod, N., Humphrey, L.T., 2008. Morphometric criteria for sexing juvenile human skeletons using the ilium. J. Forensic Sci. 53 (2), 269–278.PubMedCrossRefPubMedCentralGoogle Scholar
  46. Wilson, L.A.B., Sánchez-Villagra, M.R., 2010. Diversity trends and their ontogenetic basis: an exploration of allometric disparity in rodents. Proc. Roy. Soc. Lond. B: Biol. 277, 1227–1234.CrossRefGoogle Scholar
  47. Wilson, L.A.B., Cardoso, H.F.V., Humphrey, L.T., 2011. On the reliability of a geometric morphometric approach to sex determination: a blind test of six criteria of the juvenile ilium. Forensic Sci. Int. 206, 35–42.PubMedCrossRefPubMedCentralGoogle Scholar
  48. Young, R.L., Haselkorn, T.S., Badyaev, A.V., 2007. Functional equivalence of morphologies enables morphological and ecological diversity. Evolution 61, 2480–2492.PubMedCrossRefPubMedCentralGoogle Scholar
  49. Zahn, C.T., Roskies, R.Z., 1972. Fourier shape descriptors for closed plane curves. IEEE Trans. Comput. C-21, 269–281.Google Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2013

Authors and Affiliations

  1. 1.Kyoto University Museum, Yoshida-honmachi, Sakyo-kuKyotoJapan

Personalised recommendations