Advertisement

Mammalian Biology

, Volume 78, Issue 3, pp 178–186 | Cite as

Comparative allometric investigations on the skulls of wild cavies (Cavia aperea) versus domesticated guinea pigs (C. aperea f. porcellus) with comments on the domestication of this species

  • Dieter C. T. KruskaEmail author
  • Katja Steffen
Original Investigation

Abstract

Bivariate allometric calculations were performed to quantitatively compare skulls of wild cavies with domesticated guinea pigs. Descendents of wild caught Cavia aperea from eastern regions of the species’ distribution area were used, as well as unselected domesticated breeds of guinea pigs differing in outer appearance. The individuals of both groups were kept under similar environmental conditions. Altogether 19 parameters on the skulls and the body weights were used for the analyses. These parameters were studied in relation to greatest skull length and to body size. As a general result the diverse parameters are in most cases significantly different between both groups which is interpreted as a special result of unconsciously selected and genetically determined intraspecific changes concomitant with domestication. The skull does not change in total under the domestication process but in a mosaic manner. However, for the mosaic changes of the diverse parameters in relation to skull length a different picture is valid as related to body weight. This is caused by the fact that the skull of guinea pigs is around 5% shorter independent of the body size, a common effect of domestication also described for other species. Thus, skull length is not an appropriate parameter for body size with respect to such intraspecific investigations, although normally used for the characterization of species in interspecific comparisons of museum materials.

Altogether in relation to body weight most of the parameters describing the fascial portion of the skull are shorter in the guinea pig, especially the palatine, the diastema and the mandible but also the nasalia and frontalia lengths as well as the breadth of the rostrum and the zygomaticum are smaller. Most of the occipital skull measures are additionally smaller in the guinea pigs. This is clearly the case for the length and the breadth of the braincase and for the tympanic bulla. The braincase volume is 16.2% smaller, a value only slightly different when compared with the degree of brain size decrease due to domestication as reported for this species in other investigations.

Keywords

Cavia aperea Cavia aperea f. porcellus Skull Intraspecific allometries Domestication 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beauchamp, G.K., Criss, B.R., Wellington, J.L., 1979. Chemical communication in Cavia: responses of wild (C. aperea), domestic (C. porcellus) and F1 males to urine. Anim. Behav. 27, 1066–1072.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Belyaev, D.K., 1969. Domestication of animals. Science 5, 47–52.Google Scholar
  3. Belyaev, D.K., 1979. Destabilizing selection as a factor in domestication. J. Hered. 70, 301–308.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Bohlken, H., 1958. Zur Nomenklatur der Haustiere. Zool. Anz. (Jena) 160, 167–168.Google Scholar
  5. Bohlken, H., 1961. Haustiere und zoologische Systematik. Z. Tierzuecht. Zuechtungsbiol. 76, 107–113.CrossRefGoogle Scholar
  6. Burda, H., 1985. Effects of domestication on morphometry of ear structures in Norway rats. In: Duncker, H.R., Fleischer, G. (Eds.), Functional Morphology in Vertebrates. Fischer, Stuttgart, pp. 657–659.Google Scholar
  7. Cabrera, A., 1953. Los roedores argentinos de la familia Cavidae. Facultad de Agronomia y Veterinaria. Univ. de Buenos Aires. Publ. 6, pp. 1–93.Google Scholar
  8. Castle, W.E., 1916. An Expedition to the Home of the Guinea-pig and Some Breeding Experiments with Material there obtained. Carnegie Institution of Washington Pub. 241, pp. 1–55.Google Scholar
  9. Darwin, C., 1868. The Variation of Animals and Plants Under Domestication. John Murray, London.Google Scholar
  10. Detlefsen, J.A., 1914. Genetic Studies on a Cavy Species Cross. Carnegie Institution of Washington Pub. 205, pp. 1–134.Google Scholar
  11. Ebinger, P., de Macedo, H., Röhrs, M., 1984. Hirngrößenänderung vom Wild- zum Hausmeerschweinchen. Z. Zool. Syst. Evol. -forsch. 22, 77–80.CrossRefGoogle Scholar
  12. Eisenberg, J.F., 1989. Mammals of the Neotropics. Vol. 1. The Northern Cone (Panama, Colombia, Venezuela, Guyana, Suriname, French Guiana). Univ. Chicago Press, Chicago/London.Google Scholar
  13. Eisenberg, J.F., Redford, K.H., 1999. Mammals of the Neotropics. Vol. 3. The Central Neotropics (Ecuador, Peru, Bolivia, Brazil). Univ. Chicago Press, Chicago/London.Google Scholar
  14. Fleischer, G., 1973. Studien am Skelett des Gehörorgans der Säugetiere, einschliesslich des Menschen. Säugetierkdl. Mitt. 21, 131–239.Google Scholar
  15. Herre, W., 1953. Studien am Skelett des Mittelohres wilder und domestizierter Formen der Gattung Lama Frisch. Acta Anat. 19, 271–289.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Herre, W., Röhrs, M., 1977. Zoological considerations on the origins of farming and domestication. In: Reed, C.A. (Ed.), Origins of Agriculture. Mouton Publishers, The Hague/Paris, pp. 245–279.Google Scholar
  17. Herre, W., Röhrs, M., 1990. Haustiere-zoologisch gesehen, 2nd ed. Gustav Fischer, Stuttgart/New York.CrossRefGoogle Scholar
  18. Hückinghaus, F., 1961. Zur Nomenklatur und Abstammung des Hausmeerschweinchens. Z. Säugetierkunde 26, 108–111.Google Scholar
  19. Hückinghaus, F., 1962. Vergleichende Untersuchungen über die Formenmannigfaltigkeit der Unterfamilie Caviinae Murray, 1886. Z. Wiss. Zool. 166, 1–97.Google Scholar
  20. Kruska, D., 1975. Vergleichend-quantitative Untersuchungen an den Gehirnen von Wander- und Laborratten I. Volumenvergleich des Gesamthirns und der klassischen Hirnteile. J. Hirnforsch. 16, 469–483.Google Scholar
  21. Kruska, D., 1988. Mammalian domestication and its effect on brain structure and behavior. In: Jerison, H.J., Jerison, I. (Eds.), The Evolutionary Biology of Intelligence. NATO ASI Series in Ecology G 17. Springer, Stuttgart, pp. 211–250.CrossRefGoogle Scholar
  22. Kruska, D.C.T., 2005. On the evolutionary significance of encephalization in some eutherian mammals: effects of adaptive radiation, domestication, and feralization. Brain Behav. Evol. 65, 73–108.PubMedCrossRefGoogle Scholar
  23. Kruska, D.C.T., 2007. The effects of domestication on brain size. In: Krubitzer, L., Kaas, J. (Eds.), Evolution of Nervous Systems. Vol. 4: The Evolution of Nervous Systems in Mammals. Elsevier, London, pp. 143–153.CrossRefGoogle Scholar
  24. Kruska, D.C.T., 2011. Evolution Domestikation und Feralisation. Auswirkungen auf das Gehirn bei placentalen Säugetieren Naturwiss. Rundschau 64, 397–408.Google Scholar
  25. Kruska, D.C.T., Sidorovich, V.E., 2003. Comparative allometric skull morphometrics in mink (Mustela vison Schreber, 1777) of Canadian and Belarus origin; taxonomic status. Mamm. Biol. 68, 257–276.CrossRefGoogle Scholar
  26. Künzl, C., Sachser, N., 1999. The behavioral endocrinology of domestication: a comparison between the domestic guinea pig (Cavia aperea f. porcellus) and its wild ancestor, the cavy (Cavia aperea). Horm. Behav. 35, 28–37.PubMedCrossRefPubMedCentralGoogle Scholar
  27. Künzl, C., Sachser, N., 2000. Auswirkungen der Domestikation auf Verhalten und endokrine Anpassungsreaktionen beim Meerschweinchen. Arch. Tierzucht 43, 153–158.Google Scholar
  28. Künzl, C., Kaiser, S., Meier, E., Sachser, N., 2003. Is a wild mammal kept and reared in captivity still a wild animal? Horm. Behav. 43, 187–196.Google Scholar
  29. Morales, E., 1995. The Guinea-Pig. Healing, Food, and Ritual in the Andes. University Arizona Press, Arizona.Google Scholar
  30. Müller-Haye, B., 1984. Guinea-pig or cuy. In: Mason, I.L. (Ed.), Evolution of Domesticated Animals. Longman, London/New York.Google Scholar
  31. Pictet, A., Ferrero, A., 1951. La descendance dún croisement interspecifique de cobayes (Cavia aperea D’Az × Cavia cobaya Marc) analysee durant 25 annees. Genetica 25, 357–515.PubMedCrossRefPubMedCentralGoogle Scholar
  32. Plogmann, D., 1989. DIVA-Programm zur divariaten statistischen Analyse.Google Scholar
  33. Plogmann, D., Kruska, D., 1990. Volumetric comparison of auditory structures in the brains of European wild boars (Sus scrofa) and domestic pigs (Sus scrofa f. dom.). Brain Behav. Evol. 35, 146–155.PubMedCrossRefPubMedCentralGoogle Scholar
  34. Redford, K.H., Eisenberg, J.F., 1992. Mammals of the Neotropics. Vol. 2: The Southern Cone (Chile, Argentina, Uruguay, Paraguay). Univ. Chicago Press, Chicago/London.Google Scholar
  35. Reitz, E.J., Wing, E.S., 1999. Zooarchaeology. Cambridge Univ. Press, Cambridge.Google Scholar
  36. Rempe, U., 1962. Über einige statistische Hilfsmittel moderner zoologischsystematischer Untersuchungen. Zool. Anz. (Jena) 169, 93–140.Google Scholar
  37. Rood, J.P., 1972. Ecological and behavioural comparisons of three genera of Argentine cavies. Anim. Behav. Monogr. 5, 3–83.CrossRefGoogle Scholar
  38. Sachser, N., 1998. Of domestic and wild guinea pigs: studies in sociophysiology, domestication, and social evolution. Naturwissenschaften 85, 307–317.PubMedCrossRefPubMedCentralGoogle Scholar
  39. Sandweiss, D.H., Wing, E.S., 1997. Ritual rodents: the Guinea pigs of Chincha, Peru. J. Field Archaeol. 24, 47–58.Google Scholar
  40. Sorbe, D., Kruska, D., 1975. Vergleichende allometrische Untersuchungen an den Schädeln von Wander- und Laborratten. Zool. Anz. (Jena) 195, 124–144.Google Scholar
  41. Spotorno, A.E., Valladares, J.P., Marin, J.C., Zeballos, H., 2004. Molecular diversity among guinea-pigs (Cavia porcellus) and their close phylogenetic relationship with the Andean wild species Cavia tschudii. Rev. Chil. Hist. Nat. 77, 243–250.Google Scholar
  42. Spotorno, A.E., Marin, J.C., Manriquez, G., Valladares, J.P., Rico, E., Rivas, C., 2006. Ancient and modern steps during the domestication of guinea pigs (Cavia porcellus L.). J. Zool. 270, 57–62.Google Scholar
  43. Spotorno, A.E., Manriquez, G., Fernandez, L., Marin, A., Gonzalez, J.C., Wheeler, F.J., 2007. Domestication of guinea pigs from a southern Peru – northern Chile wild species and their middle pre-columbian mummies. Univ. California Publ. Zool. 134, 367–388.Google Scholar
  44. Stahnke, A., 1987. Verhaltensunterschiede zwischen Wild- und Hausmeerschweinchen. Z. Säugetierkunde 52, 294–307.Google Scholar
  45. Statham, M.J., Trut, L.N., Sacks, B.N., Kharlamova, A.V., Oskina, I.N., Gulevich, R.G., Johnson, J.L., Temnykh, S.V., Acland, G.M., Kukekova, A.V., 2011. On the origin of a domesticated species: identifying the parent population of Russian silver foxes (Vulpes vulpes). Biol. J. Linnean Soc. 103, 168–175.CrossRefGoogle Scholar
  46. Thenius, E., 1988. Zähne und Gebiß der Säugetiere. Handbuch Zool. Vol. 8: Mammalia Teilband 56, 1–513.Google Scholar
  47. Trillmich, F., 2000. Effects of low temperature and photoperiod on reproduction in the female wild Guinea pig (Cavia aperea). J. Mammal. 81, 586–594.CrossRefGoogle Scholar
  48. Trillmich, F., Kraus, C., Künkele, J., Asher, M., Clara, M., Dekomien, G., Epplen, J.T., Saralegui, A., Sachser, N., 2004. Species-level differentiation of two cryptic species pairs of wild cavies, genera Cavia and Galea, with a discussion of the relationship between social systems and phylogeny in the Caviinae. Can. J. Zool. 82, 516–524.CrossRefGoogle Scholar
  49. Trut, L.N., 1999. Early canid domestication: the farm-fox experiment. Am. Sci. 87, 160–169.CrossRefGoogle Scholar
  50. Trut, L., Oskina, I., Kharlamova, A., 2009. Animal evolution during domestication: the domesticated fox as a model. Bioessays 31, 349–360.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Weir, B.J., 1974. Notes on the origin of the domestic guinea pig. Symp. Zool. Soc. Lond. 34, 437–446.Google Scholar
  52. Wing, E.S., 1977. Animal domestication in the Andes. In: Reed, C.A. (Ed.), Origins of Agriculture. Mouton Publishers, The Hague/Paris, pp. 837–857.Google Scholar
  53. Wing, E.S., 1986. Domestication of Andean mammals. In: Vuilleumier, F., Monasterio, M. (Eds.), High Altitude Tropical Biogeography. Oxford Univ. Press, Oxford, pp. 246–264.Google Scholar
  54. Woods, C.A., Kilpatrick, C.W., 2006. Family Caviidae. In: Wilson, D.E., Reeder, D.A. (Eds.), Mammal Species of the World. A Taxonomic and Geographic Reference, vol. 2, 3rd ed. Johns Hopkins Univ. Press, Baltimore, pp. 1552–1553.Google Scholar
  55. Ximenez, A., 1980. Notas sobre el genero Cavia Pallas con la descripción de Cavia magna sp. n (Mammalia – Caviidae). Rev. Nordestina Biol. 3, 145–179.Google Scholar
  56. Zeuner, F.E., 1963. A History of Domesticated Animals. Hutchinson, London.Google Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2012

Authors and Affiliations

  1. 1.Zoological Institute, Christian-Albrechts-UniversityKielGermany

Personalised recommendations