Advertisement

Mammalian Biology

, Volume 78, Issue 2, pp 127–133 | Cite as

Distribution of muscle fibers in skeletal muscles of the cheetah (Acinonyx jubatus)

  • Megumi Goto
  • Minako Kawai
  • Mizuki Nakata
  • Kazuhiko Itamoto
  • Hirofumi Miyata
  • Yusuke Ikebe
  • Takamitsu Tajima
  • Naomi WadaEmail author
Original Investigation

Abstract

We examine the muscle fiber population of skeletal muscles from whole body in the cheetah (Acinonyx jubatus). In the present experiments, we showed the characteristics of fiber composition in the cheetah by comparative studies among the cheetah, domestic cat, and the beagle dog. Fiber population was determined on muscle fibers stained with monoclonal antibody to each myosin heavy chain isoform. Histochemical analysis demonstrated that many muscles in the cheetah and domestic cat had a low percentage of Type I fibers and a high percentage of Type IIx fibers, while those in the beagle dog showed a high percentage of Type IIa. The hindlimb muscles in the cheetah had a higher percentage of Type II (Type IIa + IIx) fiber than the forelimb muscles. This fact suggests that the propulsive role of the hindlimb is greater than the forelimb in the cheetah. The longissimus in the cheetah had a high percentage of Type IIx fibers over a wide range from the thoracic to lumbar parts, while the population of muscle fibers in this muscle was different depending on the parts in the domestic cat and beagle dog. This indicates that the cheetah can produce a strong and quick extension of the spinal column and increase its stiffness during locomotion. Furthermore, we found the notable difference of muscle fiber type population between flexors and extensors of digits in the cheetah. The present experiments show the characteristics of muscle fibers in the cheetah, corresponded to its ability to perform high-speed running.

Keywords

Cheetah Muscle fiber type Domestic cat Beagle dog 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander R. McN., 2003. Principle of Animal Locomotion. Princeton University Press, Princeton and Oxford.CrossRefGoogle Scholar
  2. Ariano, M.A., Armstrong, R.B., Edgerton, V.R., 1973. Hindlimb muscle fiber populations of five mammals. J. Histochem. Cytochem. 21, 51–55.CrossRefGoogle Scholar
  3. Burke, R.E., 1981. Motor units: anatomy, physiology, and functional organization. In: Brookhar, J.M., Mountcastle, V.B. (Eds.), Handbook of Physiology, Sec 1, Vol. II, Pt. 1, The Nervous System: Motor Control. American Physiological Society, Bethesda, MD, pp. 345–422.Google Scholar
  4. Burke, R.E., 1990. Spinal cord: ventral horn. In: Shephaerd, G.E. (Ed.), The Synaptic Organization of The Brain. Oxford University Press, New York, pp. 88–132.Google Scholar
  5. Crouch, J.E., 1969. Text-atlas of Cat Anatom. Lea Febiger, Philadelphia.Google Scholar
  6. Essen, B., Jansson, E., Henriksson, J., 1975. Metabolic characteristics of fibre types n human skeletal muscle. Acta. Physiol. Scan. 95, 153–165.CrossRefGoogle Scholar
  7. Gambaryan, P.P., 1974. How Mammals Run. John Wiley & Sons, NY, Tront.Google Scholar
  8. Henneman, E., 1981. Recruitment of motoneurons: The size principle. In: Desmedt, J.E. (Ed.), Motor Unit Types, Recruitment and Plasticity in Health and Disease, Vol. 9 Progress in Clinical Neurophysiology. Karger, Basel, pp. 26–60.Google Scholar
  9. Hildebrand, M., 1959. Motion of the running cheetah and horse. J. Mammal. 40, 481–495.CrossRefGoogle Scholar
  10. Hildebrand, M., 1961. Further studies on locomotion of the cheetah. J. Mammal. 42, 84–91.CrossRefGoogle Scholar
  11. Hintz, C.S., Lowry, C.V., Kaiser, K.K., Mckee, D., Lowry, O.H., 1980. Enzyme levels in individual rat muscle fibers. Am. J. Physiol. Cell Physiol. 239, C58–C65.CrossRefGoogle Scholar
  12. Hudson, P.E., Corr, S.A., Payne-Davis, R.C., Clancy, S.N., Lane, E., Wilson, A.M., 2011a. Functional anatomy of the cheetah (Acinonyx jubatus) hindlimb. J. Anat. 218, 363–374.CrossRefGoogle Scholar
  13. Hudson, P.E., Corr, S.A., Payne-Davis, R.C., Clancy, S.N., Lane, E., Wilson, A.M., 2011b. Functional anatomy of the cheetah (Acinonyx jubatus) forelimb. J. Anat. 218, 375–385.CrossRefGoogle Scholar
  14. Johnson, M.A., Polgar, J., Weightman, D., Appleton, D., 1973. Data on the distribution of fiber types in thirty-six human muscles – An autopsy study. J. Neurol. Sci. 18, 111–129.CrossRefGoogle Scholar
  15. Kawai, M., Minami, Y., Sayama, Y., Kuwano, A., Hiraga, A., Miyata, H., 2009. Muscle fiber population and Biochemical properties of whole body muscles in thoroughbred horses. Anat. Rec. 292, 1663–1669.CrossRefGoogle Scholar
  16. Medler, S., 2002. Comparative trends in shortening velocity and force production in skeletal muscle. Am. J. Phsyiol. Regul. Integr. Comp. Physiol. 283, R368–R378. Mendez, J., Keys, A., 1960. Density and composition of mammalian muscle. Metabolism 9, 184–188.Google Scholar
  17. Merkens, H.W., Schamhardt, H.C., Van Osch, G.J., Van der Bgert, A.J., 1993. Ground reaction force patterns of Dutch Warmblood horses at normal trot. Equine Vet. J 25, 134–137.CrossRefGoogle Scholar
  18. Nike, Y., Ueda, Y., Masumitsu, H., 1984. A force plate study in equine biomechanics 2. The vertical and fore-aft components of floor reaction forces and motion of equine limbs at walk and trot. Bull. Equine Res. Inst. 21, 8–18.Google Scholar
  19. Payne, R.C., Veenman, P., Wilson, A.M., 2004. The role of the extrinsic thoracic limb muscle in equine locomotion. J. Anat. 205, 479–490.CrossRefGoogle Scholar
  20. Pette, D., Staron, R.S., 1993. The molecular diversity of mammalian muscle fibers. News Physiol. Sci. 8, 153–157.Google Scholar
  21. Pette, D., Staron, R.S., 1997. Mammalian skeletal muscle fiber type transitions. Int. Rev. Cytol. 170, 153–157.Google Scholar
  22. Reichmann, H., Pette, D., 1982. A comparative microphotometric study of succinate dehydrogenase activity levels in type I IIA and IIB fibers of mammalian and human muscles. Histochemistry 74, 27–41.CrossRefGoogle Scholar
  23. Schiaffino, S., Reggiani, C., 1994. Myosin isoforms in mammalian skeletal muscle. J. Appl. Physiol. 77, 493–501.CrossRefGoogle Scholar
  24. Sharp, N., 1997. Timed running speed of a cheetah (Acinonyx jubatus). J. Zool. Lond. 241, 493–494.CrossRefGoogle Scholar
  25. Tonilo, L., Maccatrozzo, L., Patruno, M., Pavan, E., Caliaro, F., Rossi, R., Rinaldi, C., Canepari, M., Reggiani, C., Mascarello, F., 2007. Fiber types in canine muscles: myosin isoform expression and functional characterization. Am. J. Physiol. Cell Physiol. 292, C1915–C1926.CrossRefGoogle Scholar
  26. van den Hoven, R., Wensing, T., Breukink, H.L., Meijer, A.E., Kruip, T.A., 1985. Variation of fiber types in the triceps brachii, longissimus dorsi, gluteus medius, and biceps femoris of horses. Am. J. Vet. Res. 46, 939–941.PubMedGoogle Scholar
  27. Wada, N., Akatani, J., Miyajima, N., Shimojo, K., Kanda, K., 2006. The role of vertebral column muscles in level versus upslope treadmill walking – an electromyographic and kinematic study. Brain Res. 1090, 99–109.CrossRefGoogle Scholar
  28. Wells, J.B., 1965. Comparison of mechanical properties between slow and fast mammalian muscles. J. Physiol. 178, 252–269.CrossRefGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2013

Authors and Affiliations

  • Megumi Goto
    • 1
  • Minako Kawai
    • 3
  • Mizuki Nakata
    • 1
  • Kazuhiko Itamoto
    • 5
  • Hirofumi Miyata
    • 3
  • Yusuke Ikebe
    • 4
  • Takamitsu Tajima
    • 2
  • Naomi Wada
    • 1
    Email author
  1. 1.Department of System PhysiologyYamaguchi UniversityYamaguchi CityJapan
  2. 2.Honda R&D Co., Ltd.TochigiJapan
  3. 3.Department of Biological Sciences, Graduate School of MedicineYamaguchi UniversityYamaguchiJapan
  4. 4.Akiyoshidai Wild Animal ParkYamaguchiJapan
  5. 5.Animal Medical CenterYamaguchi UniversityYamaguchi CityJapan

Personalised recommendations