Advertisement

Mammalian Biology

, Volume 78, Issue 2, pp 118–126 | Cite as

Hair snaring and molecular genetic identification for reconstructing the spatial structure of Eurasian lynx populations

  • Francesca Davoli
  • Krzysztof SchmidtEmail author
  • Rafał Kowalczyk
  • Ettore Randi
Original Investigation

Abstract

Non-invasive genetic sampling (NGS) is being increasingly applied in wildlife monitoring and population genetic research. This study was designed to evaluate the use of NGS for reconstructing the spatial structure of populations of large felids. We developed a procedure for reliably genotyping individuals of Eurasian lynx (Lynx lynx) from samples obtained through a hair-trapping scheme based on a network of lynx scent-marking sites. The spatial locations of the identified genotypes were matched with the home ranges distribution of radio-tracked individuals, thus cross-checking the accuracy of the two methods. We analyzed DNA extracted from 170 hair samples and 11 blood samples from live-trapped lynx collected in 2004–2009 in the Białowieża Primeval Forest, Poland. We obtained PCR products in 96 (67%) hair samples; 82 (85%) of them were reliably genotyped at 12 autosomal microsatellite loci following a multiple-tubes protocol and stringent quality-controls of the data set. The sample included 29 distinct genotypes; 18 were found only in hair samples, five were determined only in live-trapped animals, and six in both hair and blood samples. Based on linkage disequilibrium we estimated an effective population size Ne = 20.3 (90% CI = 15–28). The total population size estimated with Capwire was Nc =32 (95% CI = 25–37) in close agreement with the observed number of genotypes. The genotypes obtained from hair samples were re-sampled on average 3.9 times and 50% of them were recorded for more than one year. The spatial distribution of six hair-genotypes was consistent with their home ranges obtained by radio-tracking in the same period. The distribution ranges of hair-trapped genotypes overlapped on average in 86.4% (mode 100%) with home ranges of the corresponding individuals. Hair-trapping and molecular identification is a reliable method for reconstructing the spatial organization of lynx population. It is likely to be also efficiently used in other rare and endangered species of felids in combination with data from other monitoring techniques, such as radio- and snow-tracking and photo-trapping.

Keywords

Lynx lynx Non-invasive genetic sampling Microsatellites Spatial organization Effective population size 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belkhir, K., Borsa, P., Chikhi, L., Raufaste, N., Bonhomme, F., 1996–2004. GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II, Montpellier, France (in French).Google Scholar
  2. Boulanger, J., Himmer, S., Swan, C., 2004. Monitoring of grizzly bear population trends and demography using DNA mark-recapture methods in the Owikeno Lake area of British Columbia. Can. J. Zool. 82, 1267–1277.CrossRefGoogle Scholar
  3. Boulanger, J., Proctor, M., Himmer, S., Stenhouse, G., Paetkau, D., Cranston, J., 2006. An empirical test of DNA mark-recapture sampling strategies for grizzly bear. Ursus 17, 149–158.CrossRefGoogle Scholar
  4. Breitenmoser, U., 1989. A footsnare for medium-sized Carnivores. Cat News 11, 20.Google Scholar
  5. Breitenmoser, U., Breitenmoser-Würsten, C., Okarma, H., Kaphegyi, T., Kaphegyi-Wallmann, U., Müller, U.M., 2000. Action Plan for the Conservation of the Eurasian Lynx in Europe (Lynx lynx). Nature and Environment 112. Council of Europe, Strasbourg Cedex, France.Google Scholar
  6. Breitenmoser-Würsten, C., Vandel, J.M., Zimmermann, F., Breitenmoser, U., 2007. Demography of lynx Lynx lynx in the Jura Mountains. Wildl. Biol. 13, 381–392.CrossRefGoogle Scholar
  7. Broquet, T., Petit, E., 2004. Quantifying genotyping errors in noninvasive population genetics. Mol. Ecol. 13, 3601–3608.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Castro-Arellano, I., Madrid-Luna, C., Lacher Jr., T.E., Leon-Paniagua, L., 2008. Hair-trap efficacy for detecting mammalian carnivoresin the tropics. J. Wildl. Manage. 72, 1405–1412.CrossRefGoogle Scholar
  9. Crow, J.F., Kimura, M., 1970. An Introduction to Population Genetics Theory. Harper & Row, New York, NY, USA.Google Scholar
  10. Davison, A., Birks, J.D.S., Brookes, R.C., Braithwaite, T.C., Messanger, J.E., 2002. On the origin of faeces: morphological versus molecular methods for surveying rare carnivores from their scats. J. Zool. (Lond.) 257, 141–143.CrossRefGoogle Scholar
  11. De Barba, M., Waits, L.P., Garton, E.O., Genovesi, P., Randi, E., Mustoni, A., Groff, C., 2010. The power of genetic monitoring for studying demography, ecology and genetics of a reintroduced brown bear population. Mol. Ecol. 19, 3938–3951.PubMedCrossRefGoogle Scholar
  12. Delibes, M., Rodríguez, A., Ferreras, P., 2000. Action Plan for the conservation of the Iberian lynx (Lynx pardinus) in Europe. Council of Europe, Strasbourg, France.Google Scholar
  13. Downey, P.J., Hellgren, E.C., Caso, A., Carvajal, S., Frangioso, K., 2007. Hair snares for noninvasive sampling of felids in North America: do gray foxes affect success. J. Wildl. Manage. 71, 2090–2094.CrossRefGoogle Scholar
  14. Eizirik, E., Kim, J.H., Menotti-Raymond, M., Crawshaw, P.G., O’Brien, S.J., Johnson, W.E., 2001. Phylogeography, population history and conservation genetics of jaguars (Panthera onca, Mammalia, Felidae). Mol. Ecol. 10, 65–79.PubMedCrossRefGoogle Scholar
  15. Fabbri, E., Miquel, C., Lucchini, V., Santini, A., Caniglia, R., Duchamp, C., Weber, J.M., Lequette, B., Marucco, F., Boitani, L., Fumagalli, L., Taberlet, P., Randi, E., 2007. From the Appennines to the Alps: colonization genetics of the naturally expanding Italian wolfs (Canis lupus) population. Mol. Ecol. 16, 1661–1671.PubMedCrossRefGoogle Scholar
  16. Faliński, J.B., 1986. Vegetation Dynamics in Temperate Lowland Primeval Forest. Dr. W. Junk Publishers, Dordrecht, Germany.CrossRefGoogle Scholar
  17. Gerloff, U., Schlötterer, C., Rassmann, K., Rambold, I., Hohmann, G., Fruth, B., Tautz, D., 1995. Amplification of hypervariable simple sequence repeats (microsatellites) from excremental DNA of wild living bonobos (Pan paniscus). Mol. Ecol. 4, 515–518.CrossRefGoogle Scholar
  18. Gervasi, V., Ciucci, P., Davoli, F., Boulanger, J., Boitani, L., Randi, E., 2010. Addressing challenges in non invasive capture–recapture based estimates of small populations: a pilot study on the Apennine brown bear. Conserv.Genet. 11, 2299–2310.CrossRefGoogle Scholar
  19. Haag, T., Santos, A.S., De Angelo, C., Srbek-Araujo, A.C., Sana, D.A., Morato, R.G., Salzano, F.M., Eizirik, E., 2009. Development and testingofanoptimized method for DNA-based identification of jaguar (Panthera onca) and puma (Puma concolor) faecal samples for use in ecological and genetic studies. Genetics 136, 505–512.Google Scholar
  20. Janečka, J.E., Blankenship, T.L., Hirth, D.H., Tewes, M.E., Kilpatrick, C.W., Grassman Jr., L.I., 2006. Kinship and social structure of bobcats (Lynx rufus) inferred from microsatellite and radio-telemetry data. J. Zool. 269, 494–501.CrossRefGoogle Scholar
  21. Jędrzejewski, W., Jędrzejewska, B., Okarma, H., Schmidt, K., Bunevich, A.N., Miłkowski, L., 1996. Population dynamics (1869–1994), demography and home ranges of the lynx in Białowieża Primeval Forest (Poland and Belaruss). Ecography 19, 122–138.CrossRefGoogle Scholar
  22. Kalinowski, S.T., Wagner, A.P., Taper, M.L., 2006a. ML-Relate: a computer program for maximum likelihood estimation of relatedness and relationship. Mol. Ecol. Notes 6, 576–579.CrossRefGoogle Scholar
  23. Kalinowski, S.T., Sawaya, M., Taper, M.L., 2006b. Individual identification and distributions of genotypic differences. J. Wildl. Manage. 70, 148–150.CrossRefGoogle Scholar
  24. Kolbe, J.A., Squires, J.R., Parker, T.W., 2003. An effective box trap for capturing lynx. Wildl. Soc. Bull. 31, 980–985.Google Scholar
  25. McDaniel, G.W., McKelvey, K.S., Squires, J.R., Ruggiero, L.F., 2000. Efficacy of lures and hair snares to detect lynx. Wildl. Soc. Bull. 28, 119–123.Google Scholar
  26. McKelvey, K.S., Von Kienast, J., Aubry, K.B., Koehler, G.M., Maletzke, B.T., Squires, J.R., Lindquist, E.L., Loch, S., Schwartz, M.K., 2006. DNA analysis of hair and scat collected along snow tracks to document the presence of Canada lynx. Wildl. Soc. Bull. 34, 451–455.CrossRefGoogle Scholar
  27. Mellen, J.D., 1993. A comparative analysis of scent-marking, social and reproductive behavior in 20 species of small cats (Felis). Am. Zool. 33, 151–166.CrossRefGoogle Scholar
  28. Menotti-Raymond, M., David, V.A., Lyons, L.A., Schafer, A.A., Tomlin, J.F., Hutton, M.K., O’Brien, S.J., 1999. A genetic linkage map of microsatellites in the domestic cat (Felis catus). Genomics 57, 9–23.PubMedCrossRefGoogle Scholar
  29. Miller, C.R., Joyce, P., Waits, L.P., 2002. Assessing allelic dropout and genotyping reliability using maximum likelihood. Genetics 160, 357–366.PubMedPubMedCentralGoogle Scholar
  30. Miller, C.R., Joyce, P., Waits, L.P., 2005. A new method for estimating the size of small populations from genetic mark—recapture data. Mol. Ecol. 14, 1991–2005.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Mills, L.S., Citta, J.J., Lair, K.P., Schwartz, M.K., Tallmon, D.A., 2000. Estimating animal abundance using noninvasive DNA sampling: promise and pitfalls. Ecol. Appl. 10, 283–294.CrossRefGoogle Scholar
  32. Mowat, G., Paetkau, D., 2002. Estimating marten Martes americana population size using hair capture and genetic tagging. Wildl. Biol. 8 (3), 201–209.CrossRefGoogle Scholar
  33. Nichols, J.D., Williams, B.K., 2006. Monitoring for conservation. Trends Ecol. Evol. 21, 668–673.PubMedCrossRefPubMedCentralGoogle Scholar
  34. Nikolov, I.S., Gum, B., Markov, G., Kuehn, R., 2009. Population genetic structure of wild boar Sus scrofa in Bulgaria as revealed by microsatellite analysis. Acta Theriol. 54 (3), 193–205.CrossRefGoogle Scholar
  35. Paetkau, D., 2003. Anempirical exploration of data qualityin DNA-based population inventories. Mol. Ecol. 12, 1375–1387.PubMedCrossRefGoogle Scholar
  36. Palomares, F., Godoy, J.A., Piriz, A., O’Brien, S.J., Johnson, W.E., 2002. Faecal genetic analysis to determine the presence and distribution of elusive carnivores: design and feasibility for the Iberian lynx. Mol. Ecol. 11, 2171–2182.CrossRefGoogle Scholar
  37. Peakall, R., Smouse, P.E., 2006. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288–295.CrossRefGoogle Scholar
  38. Pilgrim, K.L., McKelvey, K.S., Riddle, A.E., Schwartz, M.K., 2005. Felid sex identification based on noninvasive genetic samples. Mol. Ecol. Notes 5, 60–61.CrossRefGoogle Scholar
  39. Pilot, M., Jędrzejewski, W., Branicki, W., Sidorovich, V.E., Jedrzejewska, B., Stachura, K., Funk, S.M., 2006. Ecological factors influence population genetic structure of European grey wolves. Mol. Ecol. 15, 4533–4553.CrossRefGoogle Scholar
  40. Pompanon, F., Bonin, A., Bellemain, E., Taberlet, P., 2005. Genotyping errors: causes, consequences and solutions. Nat. Rev. Genet. 6, 847–859.PubMedCrossRefGoogle Scholar
  41. Roon, D.A., Thomas, M.E., Kendall, K.C., Waits, L.P., 2005. Evaluating mixed samples as a source of error in non-invasive genetic studies using microsatellites. Mol. Ecol. 14, 195–201.PubMedCrossRefGoogle Scholar
  42. Rowcliffe, J.M., Carbone, C., 2008. Surveys using camera traps: are we looking to a brighter future? Anim. Conserv. 11, 185–186.Google Scholar
  43. Ruell, E.W., Crooks, K.R., 2007. Evaluation of non-invasive genetic sampling methods for felid and canid populations. J. Wildl. Manage. 71, 1690–1694.CrossRefGoogle Scholar
  44. Rueness, E.K., Jorde, P.E., Hellborg, L., Stenseth, N.C., Ellegren, H., Jakobsen, K.S., 2003. Cryptic population structure in a large, mobile mammalian predator: the Scandinavian lynx. Mol. Ecol. 12, 2623–2633.PubMedCrossRefGoogle Scholar
  45. Sawaya, M.A., Ruth, T.K., Creel, S., Rotella, J.J., Stetz, J.B., Quigley, H.B., Kalinowski, S.T., 2011. Evaluating noninvasive genetic sampling methods for cougars in Yellowstone National Park. J. Wildl. Manage. 75, 612–622.CrossRefGoogle Scholar
  46. Schmidt, K., 2008. Behavioural and spatial adaptation of the Eurasian lynx to a decline in prey availability. Acta Theriol. 53, 1–16.CrossRefGoogle Scholar
  47. Schmidt, K., Je˛drzejewski, W., Okarma, H., 1997. Spatial organization and social relations in the Eurasian lynx population in Białowieża Primeval Forest. Poland. Acta Theriol. 42, 289–312.CrossRefGoogle Scholar
  48. Schmidt, K., Kowalczyk, R., 2006. Using scent-marking stations to collect hair samples to monitor Eurasian lynx populations. Wildl. Soc. Bull. 34, 462–466.CrossRefGoogle Scholar
  49. Schmidt, K., Kowalczyk, R., Ozolins, J., Männil, P., Fickel, J., 2009. Genetic structure of the Eurasian lynx population in north-eastern Poland and the Baltic states. Conserv. Genet. 10, 497–501.CrossRefGoogle Scholar
  50. Schwartz, M.K., Mills, L.S., Ortega, Y., Ruggiero, L.F., Allendorf, F.W., 2003. Landscape location affects genetic variation of Canada lynx (Lynx canadensis). Mol. Ecol. 12, 1807–1816.PubMedCrossRefGoogle Scholar
  51. Schwartz, M.K., Luikart, G., Waples, R.S., 2007. Genetic monitoring as a promising tool for conservation and management. Trends Ecol. Evol. 22, 25–33.PubMedCrossRefGoogle Scholar
  52. Sutherland, W.J., 1996. Ecological Census Techniques: AHandbook. Cambridge University Press, Cambridge, United Kingdom.Google Scholar
  53. Taberlet, P., Griffin, S., Goossens, B., Questiau, S., Manceau, V., Escaravage, N., Waits, L.P., Bouvet, J., 1996. Reliable genotyping of samples with very low DNA quantities using PCR. Nucleic Acids Res. 26, 3189–3194.CrossRefGoogle Scholar
  54. Taberlet, P., Waits, L.P., Luikart, G., 1999. Non-invasive genetic sampling: look before you leap. Trends Ecol. Evol. 14, 323–327.PubMedCrossRefGoogle Scholar
  55. Valière, N., 2002. GIMLET: a computer program for analysing genetic individual identification data. Mol. Ecol. Notes 2, 377–379.Google Scholar
  56. Waits, L.P., Paetkau, D., 2005. Non-invasive genetic sampling tools for wildlife biologists: a review of applications and recommendations for accurate data collection. J. Wildl. Manage. 69 (4), 1419–1433.CrossRefGoogle Scholar
  57. Waples, R.S., 2006. A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conserv. Genet. 7, 167–184.CrossRefGoogle Scholar
  58. Wasser, S.K., Houston, C.S., Koehler, G.M., Cadd, G.G., Fain, S.R., 1997. Techinques for the application of faecal DNA methods to field studies of Ursids. Mol. Ecol. 6, 1091–1097.PubMedCrossRefGoogle Scholar
  59. Weaver, J.L., Wood, P., Paetkau, D., Laack, L.L., 2005. Use of scented hair snares to detect ocelots. Wildl. Soc. Bull. 33 (4), 1384–1391.CrossRefGoogle Scholar
  60. Weir, B.S., Cockerham, C.C., 1984. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370.PubMedPubMedCentralGoogle Scholar
  61. Woods, J.G., Paetkau, D., Lewis, D., McLellan, B.N., Proctor, M., Strobeck, C., 1999. Genetic tagging of free-ranging black and brown bears. Wildl. Soc. Bull. 27 (3), 616–627.Google Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2013

Authors and Affiliations

  • Francesca Davoli
    • 1
  • Krzysztof Schmidt
    • 2
    Email author
  • Rafał Kowalczyk
    • 2
  • Ettore Randi
    • 1
  1. 1.Laboratorio di GeneticaIstituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA)Ozzano EmiliaItaly
  2. 2.Polish Academy of SciencesMammal Research InstituteBiałowieżaPoland

Personalised recommendations