Abstract
Magnetic alignment (MA) constitutes the simplest directional response to the geomagnetic field. In contrast to magnetic compass orientation, MA is not goal directed and represents a spontaneous, fixed directional response. Because animals tend to align their bodies along or perpendicular to the magnetic field lines, MA typically leads to bimodal or quadrimodal orientation, although there is also growing evidence for a fixed unimodal orientation not necessarily coinciding with the magnetic cardinal directions. MA has been demonstrated in diverse animals including insects, amphibians, fish, and mammals. Alignment can be expressed by animals during resting as well as on the move (e.g. while grazing, hunting, feeding, etc.). Here, we briefly survey characteristic features and classical examples of MA and review the current knowledge about the occurrence of MA in mammals. In addition, we summarize what is known about mechanisms underlying MA and discuss its prospective biological functions. Finally, we highlight some physiological effects of alignment along the magnetic field axes reported in humans. We argue that the phenomenon of MA adds a new paradigm that can be exploited for investigation of magnetoreception in mammals.
Keywords
Cattle Deer Fox Horse MagnetoreceptionPreview
Unable to display preview. Download preview PDF.
References
- Able, K.P., Gergits, W., 1985. Human navigation: attempts to replicate Baker’s displacement experiment. Magnetite biomineralization and magnetoreception in organisms. In: Kirschvink, J.L., Jones, D.S., MacFadden, B.J. (Eds.), Magnetite Biomineralization and Magnetoreception in Animals: A New Biomagnetism. Plenum Press, New York, pp. 569–572.CrossRefGoogle Scholar
- Altmann, G., 1981. Untersuchung zur Magnetotaxis der Honigbiene, Apis mellifica L. Anz. Schädlingsk. 54, 177–179.Google Scholar
- Baker, R.R., 1980. Goal orientation by blindfolded humans after long-distance displacement: possible involvement of a magnetic sense. Science 210, 555–557.PubMedCrossRefPubMedCentralGoogle Scholar
- Baker, R.R., 1987. Human navigation and magnetoreception: the Manchester experiments do replicate. Anim. Behav. 35, 691–704.CrossRefGoogle Scholar
- Baker, R.R., Mather, J.G., Kennaugh, J.H., 1983. Magnetic bones in human sinuses. Nature 301, 78–80.CrossRefGoogle Scholar
- Batschelet, E., 1981. Circular Statistics in Biology. Academic Press, London, 372 pp.Google Scholar
- Bauer, G.B., Fuller, M., Perry, A., Dunn, J.R., Zoeger, J., 1985. Magnetoreception and biomineralization of magnetite in cetaceans. In: Kirschvink, J.L., Jones, D.S., MacFadden, B.J. (Eds.), Magnetite Biomineralization and Magnetoreception in Animals: A New Biomagnetism. Plenum Press, New York, pp. 489–507.CrossRefGoogle Scholar
- Beason, R.C., 2005. Mechanisms of magnetic orientation in birds. Integr. Comp. Biol. 45, 565–573.PubMedCrossRefPubMedCentralGoogle Scholar
- Becker, G., 1963. Ruheeinstellung nach der Himmelsrichtung, eine Magnetfeldori-entierung bei Termiten. Naturwissenschaften 50, 455.Google Scholar
- Becker, G., 1964. Reaktion von Insekten auf Magnetfelder, elektrische Felder und atmospherics. Z. Angew. Entomol. 54, 75–88.CrossRefGoogle Scholar
- Becker, G., 1974. Einfluß des Magnetfelds auf das Richtungsverhalten von Goldfischen. Naturwissenschaften 61, 220–221.PubMedCrossRefGoogle Scholar
- Becker, G., 1971. Magnetfeld-Einfluß auf den Galeriebau von Termiten. Naturwissenschaften 58, 60.Google Scholar
- Becker, G., 1976. Reaction of termites to weak alternating magnetic fields. Naturwissenschaften 63, 201–202.CrossRefGoogle Scholar
- Becker, G., Speck, U., 1964. Untersuchungen über die Magnetfeldorientierung von Dipteren. Z. Vergl. Physiol. 49, 301–340.CrossRefGoogle Scholar
- Begall, S.,Červený, J., Neef, J., Vojtech, O., Burda, H., 2008. Magnetic alignmentingraz-ing and resting cattle and deer. Proc. Natl. Acad. Sci. U.S.A. 105, 13451–13455.PubMedPubMedCentralCrossRefGoogle Scholar
- Begall, S., Burda, H., Červený, J., Gerter, O., Neef-Weisse, J., Neˇmec, P., 2011. Further support for the alignment of cattle along magnetic field lines: reply to Hert et al. J. Comp. Phys. A 197, 1127–1133.CrossRefGoogle Scholar
- Bellini, S., 2009a. On a unique behavior of freshwater bacteria. Chin. J. Oceanol. Limnol. 27, 3–5.CrossRefGoogle Scholar
- Bellini, S., 2009b. Further studies on magnetosensitive bacteria. Chin. J. Oceanol. Limnol. 27, 6–12.CrossRefGoogle Scholar
- Benhamou, S., Sauvé, J.-P., Bovet, P., 1990.Spatial memoryinlarge scale movements: efficiency and limitation of the egocentric coding process. J. Theoret. Biol. 145, 1–12.CrossRefGoogle Scholar
- Blakemore, R., 1975. Magnetotactic bacteria. Science 190, 377–379.PubMedCrossRefGoogle Scholar
- Blakemore, R.P., Frankel, R.B., Kalmijn, A.J., 1980. South-seeking magnetotactic bacteria in the Southern Hemisphere. Nature 286, 384–385.CrossRefGoogle Scholar
- Burda, H., Beiles, A., Marhold, S., Simson, S., Nevo, E., Wiltschko, W., 1991. Magnetic orientation in subterranean mole rats of the superspecies Spalax ehrenbergi: experiments, patterns and memory. Isr. J. Zool. 37, 182–183.Google Scholar
- Burda, H., Begall, S., Červený, J., Neef, J., Němec, P., 2009. Extremely low-frequency electromagnetic fields disrupt magnetic alignment of ruminants. Proc. Natl. Acad. Sci. U.S.A. 106, 5708–5713.PubMedPubMedCentralCrossRefGoogle Scholar
- Burda, H., Marhold, S., Westenberger, T., Wiltschko, W., Wiltschko, R., 1990. Magnetic compass orientation in the subterranean rodent Cryptomys hottentotus (Bathyergidae, Rodentia). Experientia 46, 528–530.PubMedCrossRefGoogle Scholar
- Burger, T., Lucova, M., Moritz, R., Oelschläger, H.H.A., Druga, R., Burda, H., Wiltschko, R., Wiltschko, W., Němec, P., 2010. Changing and shielded magnetic fields suppress c-Fos expression in the rodent navigation circuit: does input from the magnetosensory system contribute to internal representation of space? J. Roy. Soc. Interface 7, 1275–1292.CrossRefGoogle Scholar
- Calvert, G., Spence, C., Stein, B.E. (Eds.), 2004. The Handbook of Multisensory Processes. The MIT Press, Cambridge, MA, p. 915.Google Scholar
- Carrubba, S., Frilot, I., 2007. Evidence of a nonlinear human magnetic sense. Neuro-science 144, 356–367.Google Scholar
- Červeny´, J., Begall, S., Koubek, P., Nováková, P., Burda, H., 2011. Directional preference may enhance hunting accuracy in foraging foxes. Biol. Lett. 7, 355–357.PubMedPubMedCentralCrossRefGoogle Scholar
- Chew, G., Brown, G.E., 1989. Orientation of rainbow trout (Salmo gairdneri)innormal and null magnetic fields. Can. J. Zool. 67, 641–643.CrossRefGoogle Scholar
- Cremer-Bartels, G., Krause, K., Kuechle, H., 1983. Influence of low magnetic-field-strength variations on the retina and pineal gland of quail and humans. Graefes Arch. Clin. Exp. Ophthalmol. 220, 248–252.Google Scholar
- Cressey, D., 2008. ‘Magnetic cows’ are visible from space. Nat. News, https://doi.org/10.1038/news.2008.1059 (25 Aug 2008).
- Cuppini, C., Ursino, M., Magosso, E., Rowland, B.A., Stein, B.A., 2010. An emergent model of multisensory integration in superior colliculus neurons. Front. Integr. Neurosci. 4, 1–15.Google Scholar
- Deoras, P.J.,1962. Some observations on the termites of Bombay. In: Termites in the Humid Tropics. Proc. New Delhi Symp. 1960. UNESCO, Paris, pp. 101–103.Google Scholar
- Deutschlander, M.E., Freake, M.J., Borland, S.C., Phillips, J.B., Madden, R.C., Anderson, L.E., Wilson, B.W., 2003. Learned magnetic compass orientation by the Siberian hamster, Phodopus sungorus. Anim. Behav. 65, 779–786.CrossRefGoogle Scholar
- Diebel, C.E., Proksch, R., Green, C.R., Neilson, P., Walker, M.M., 2000. Magnetite defines a vertebrate magnetoreceptor. Nature 406, 299–302.PubMedCrossRefPubMedCentralGoogle Scholar
- Dommer, D.H., Gazzolo, P.J., Painter, M.S., Phillips, J.B., 2008. Magnetic compass orientation by larval Drosophila melanogaster. J. Insect Physiol. 54, 719–726.PubMedCrossRefPubMedCentralGoogle Scholar
- Dusenbery, D.B., 1992. Sensory Ecology: How Organisms Acquire and Respond to Information. W.H. Freeman & Co, New York.Google Scholar
- Etienne, A.S., Maurer, R., Saucy, F., 1988. Limitationsinthe assessment ofpath dependent information. Behaviour 106, 81–111.CrossRefGoogle Scholar
- Fildes, B.N., O’Loughlin, B.J., Bradshaw, J.L., Ewens, W.J., 1984. Human orientation with restricted sensory information: no evidence for magnetic sensitivity. Perception 13, 229–236.PubMedCrossRefPubMedCentralGoogle Scholar
- Foley, L.E., Gegear, R.J., Reppert, S.M., 2011. Human cryptochrome exhibits lightdependent magnetosensitivity. Nat. Commun. 2, 356.Google Scholar
- Frankel, R.B., 2009. The discovery of magnetotactic/magnetosensitive bacteria. Chin. J. Oceanol. Limnol. 27, 1–2.CrossRefGoogle Scholar
- Frankel, R.B., Blakemore, R., De Araujo, F.F.T., Esquivel, D.M.S., Danon, J., 1981. Mag-netotactic bacteria at the geomagnetic equator. Science 212, 1269–1270.PubMedCrossRefPubMedCentralGoogle Scholar
- Frankel, R.B., Blakemore, R.P., Wolfe, R.S., 1979. Magnetite in freshwater magneto-tactic bacteria. Science 203, 1355–1356.PubMedCrossRefPubMedCentralGoogle Scholar
- Gegear, R.J., Casselman, A., Waddell, S., Reppert, S.M., 2008. Cryptochrome mediates light-dependent magnetosensitivity in Drosophila. Nature 454, 1014–1018.PubMedPubMedCentralCrossRefGoogle Scholar
- Gould, J.L., Kirschvink, J.L., Deffeyes, K.S., Brines, M.L., 1980. Orientation of demagnetized bees. J. Exp. Biol. 86, 1–8.Google Scholar
- Gould, J.L., 1985. Absence of human homing ability as measured by displacement experiments. In: Kirschvink, J.L., Jones, D.S., MacFadden, B.J. (Eds.), Magnetite Biomineralization and Magnetoreception in Animals: A New Biomagnetism. Plenum Press, New York, pp. 595–599.CrossRefGoogle Scholar
- Gould, J.L., 2008. Animal navigation: the evolution of magnetic orientation. Curr. Biol. 18, 482–484.CrossRefGoogle Scholar
- Gould, J.L., Able, K.P., 1981. Human homing: an elusive phenomenon. Science 212, 1061–1063.PubMedCrossRefPubMedCentralGoogle Scholar
- Grubb, J.D., Reed, C.L., Bate, S., Garza, J., Roberts Jr., R.J., 2008. Walking reveals trunk orientation bias for visual attention. Percept. Psychophys. 70, 688–696.PubMedCrossRefPubMedCentralGoogle Scholar
- Hert, J., Jelinek, L., Pekarek, L., Pavlicek, A., 2011. No alignment of cattle along geomagnetic field lines found. J. Comp. Physiol. A 197, 677–682.CrossRefGoogle Scholar
- Hetem, R.S., Strauss, W.M., Heusinkveld, B.G., de Bie, S., Prins, H.H.T., van Wieren, S.E., 2011. Energy advantages of orientation to solar radiation in three African ruminants. J. Therm. Biol. 36, 452–460.CrossRefGoogle Scholar
- Heyers, D., Manns, M., Luksch, H., Güntürkün, O., Mouritsen, H., 2007. A visual pathway links brain structures active during magnetic compass orientation in migratory birds. PLoS One 9, e937.Google Scholar
- Holland, R.A., Thorup, K., Vonhof, M., Cochran, W.W., Wikelski, M., 2006. Bat orientation using Earth’s magnetic field. Nature 444, 653–702.Google Scholar
- Holland, R.A., Kirschvink, J.L., Doak, T.G., Wikelski, M., 2008. Bats use magnetite to detect the Earth’s magnetic field. PLoS One 3, e1676.PubMedPubMedCentralCrossRefGoogle Scholar
- Holland, R.A., Borissov, I., Siemers, B.M., 2010. A nocturnal mammal, the greater mouse-eared bat, calibrates a magnetic compass by the sun. Proc. Natl. Acad. Sci. U.S.A. 107, 6941–6945.PubMedPubMedCentralCrossRefGoogle Scholar
- Hsu, C.-Y., Ko, F.-Y., Li, C.-W., Fann, K., Lue, J.-T., 2007. Magnetoreception system in honeybees (Apis mellifera). PLoS One 2, e395.PubMedPubMedCentralCrossRefGoogle Scholar
- Kalmijn, A.J., Blakemore, R.P., 1978. The magnetic behavior of mud bacteria. In: Schmidt-Koenig, K., Keeton, W.T. (Eds.), Animal Migration, Navigation and Homing. Springer-Verlag, Berlin, 354 pp.Google Scholar
- Kimchi, T., Etienne, A.S., Terkel, J., 2004. A subterranean mammal uses the magnetic compass for path integration. Proc. Natl. Acad. Sci. U.S.A. 101, 1105–1109.Google Scholar
- Kimchi, T., Terkel, J., 2001. Magnetic compass orientation in the blind mole rat Spalax ehrenbergi. J. Exp. Biol. 204, 751–758.PubMedPubMedCentralGoogle Scholar
- Kirschvink, J.L., Kobayashi-Kirschvink, A., Woodford, B.J., 1992. Magnetite biomin-eralization in the human brain. Proc. Natl. Acad. Sci. U.S.A. 89, 7683–7687.PubMedPubMedCentralCrossRefGoogle Scholar
- Kirschvink, J.L., Winklhofer, M., Walker, M.M., 2010. Biophysics of magnetic orientation: strengthening the interface between theory and experimental design. J. Roy. Soc. Interface 7, 179–191.CrossRefGoogle Scholar
- Lindauer, M., Martin, H., 1968. Die Schwereorientierung der Bienen unter dem Ein-fluß des Erdmagnetfeldes. Zeitschr. Vergl. Physiol. 60, 219–243.CrossRefGoogle Scholar
- Marhold, S., Beiles, A., Burda, H., Nevo, E., 2000. Spontaneous directional preference in a subterranean rodent, the blind mole-rat, Spalax ehrenbergi. Folia Zool. 49, 7–18.Google Scholar
- Marhold, S., Burda, H., Kreilos, I., Wiltschko, W., 1997a. Magnetic orientation in com-monmole-ratsfromZambia.In:OrientationandNavigation-Birds, Humansand Other Animals. Royal Institute of Navigation, Oxford, pp. 5.1–5.9.Google Scholar
- Marhold, S., Wiltschko, W., Burda, H., 1997b. A magnetic polarity compass for direction finding in a subterranean mammal. Naturwissenschaften 84, 421–423.CrossRefGoogle Scholar
- Martin, H., Lindauer, M., 1977. Der Einfluß des Erdmagnetfeldes auf die Schwereori-entierung der Honigbiene (Apis mellifica). J. Comp. Physiol. 122, 145–187.CrossRefGoogle Scholar
- Mather, J.G., Baker, R.R., 1981. Magnetic sense of direction in woodmice for route-based navigation. Nature 291, 152–155.CrossRefGoogle Scholar
- Moritz, R.E., Burda, H., Begall, S., Neˇmec, P., 2007. Magnetic compass: a useful tool underground. In: Begall, S., Burda, H., Schleich, C.E. (Eds.), Subterranean Rodents: News from Underground. Springer Verlag, Heidelberg, pp. 161–174.CrossRefGoogle Scholar
- Mouritsen, H., Feenders, G., Liedvogel, M., Wada, K., Jarvis, E.D., 2005. Night vision brain area in migratory songbirds. Proc. Natl. Acad. Sci. U.S.A. 102, 8339–8344.PubMedPubMedCentralCrossRefGoogle Scholar
- Muheim, R., Jenni, L., Weindler, P., 1999. The orientation behaviour of chaffinches, Fringilla coelebs, caught during active migratory flight, in relation to the sun. Ethology 105, 97–110.CrossRefGoogle Scholar
- Muheim, R., Edgar, N.M., Sloan, K.A., Phillips, J.B., 2006. Magnetic compass orientation in C57BL/6J mice. Learn. Behav. 34, 366–373.PubMedCrossRefPubMedCentralGoogle Scholar
- Němec, P., Altmann, J., Marhold, S., Burda, H., Oelschläger, H.A., 2001. Neuroanatomy of magnetoreception: the superior colliculus involved in magnetic orientation in a mammal. Science 294, 366–368.PubMedCrossRefPubMedCentralGoogle Scholar
- Neˇmec, P., Cveková, P., Benada, O., Wielkopolska, E., Olkowicz, S., Turlejski, K., Burda, H., Bennett, N.C., Peichl, L., 2008. The visual system in subterranean African mole-rats (Rodentia, Bathyergidae): retina, subcortical visual nuclei and primary visual cortex. Brain Res. Bull. 75, 356–364.CrossRefGoogle Scholar
- Oliveriusová, L., Némec, P., Králová, Z., Sedlácˇek F., under review. Magnetic compass orientationintwo strictly subterranean rodents: learnedor species-specific innate directional preference? J. Exp. Biol.Google Scholar
- Patzenhauerova, H., Bryja, J., Sumbera, R., 2010. Kinship structure and mating system in a solitary subterranean rodent, the silvery mole-rat. Behav. Ecol. Sociobiol. 64, 757–767.CrossRefGoogle Scholar
- Phillips, J.B., 1986. Two magnetoreception pathways in a migratory salamander. Science 233, 765–767.PubMedCrossRefPubMedCentralGoogle Scholar
- Phillips, J.B., 1996. Magnetic navigation. J. Theoret. Biol. 180, 309–319.CrossRefGoogle Scholar
- Phillips, J.B., Borland, S.C., Freake, M.J., Brassart, J., Kirschvink, J.L., 2002. ‘Fixed-axis’ magnetic orientation by an amphibian: non-shoreward-directed compass orientation, misdirected homing or positioning a magnetite-based map detector in a consistent alignment relative to the magnetic field? J. Exp. Biol. 205, 3903–3914.Google Scholar
- Phillips, J.B., Muheim, R., Jorge, P.E., 2010. A behavioral perspective on the biophysics ofthelight-dependentmagnetic compass:alinkbetween directional and spatial perception? J. Exp. Biol. 213, 3247–3255.CrossRefGoogle Scholar
- Ritz, T., Adem, S., Schulten, K., 2000. A model for photoreceptor-based magnetore-ception in birds. Biophys. J. 78, 707–718.PubMedPubMedCentralCrossRefGoogle Scholar
- Ritz, T., Thalau, P., Phillips, J., Wiltschko, R., Wiltschko, W., 2004. Resonance effects indicate a radical pair mechanism for avian magnetic compass. Nature 429, 177–180.PubMedCrossRefPubMedCentralGoogle Scholar
- Roonwal, M.L., 1958. Recent work on termite research in India (1947–57). Trans. Bose Res. Inst. 22, 77–100.Google Scholar
- Ruhenstroth-Bauer, G., Rüther, E., Reinertshofer, T.H., 1987. Dependence of a sleeping parameter from the N-S or E-W sleeping direction. Z. Naturf. 42c, 1140–1142.Google Scholar
- Ruhenstroth-Bauer, G., Günther, W., Hantschk, I., Klages, U., Kugler, J., Peters, J., 1993. Influence of the Earth’s magnetic field on resting and activated EEG mapping in normal subjects. Int. J. Neurosci. 73, 195–201.PubMedCrossRefPubMedCentralGoogle Scholar
- Sandberg, R., Pettersson, J., Persson, K., 1991. Migratory orientation of free flying robins Erithacus rubecula and pied flycatchers Ficedula hypoleuca: release experiments. Ornis Scand. 22, 1–11.CrossRefGoogle Scholar
- Schlegel, P.A., 2007. Spontaneous preferences for magnetic compass direction in the American red-spotted newt, Notophthalmus viridescens (Salamandridae, Urodela). J. Ethol. 25, 177–184.CrossRefGoogle Scholar
- Schlegel, P.A., 2008. Magnetic and othernon-visualorientationmechanismsinsome cave and surface urodeles. J. Ethol. 26, 347–359.CrossRefGoogle Scholar
- Schlegel, P.A., Renner, H., 2007. Innate preference for magnetic compass direction in the alpine newt, Triturus alpestris (Salamandridae, Urodela)? J. Ethol 25, 185–193.CrossRefGoogle Scholar
- Schulten, K., Swenberg, C.E., Weller, A., 1978. A biomagnetic sensory mechanism based on magnetic field modulated coherent electron spin motion. Z. Physikal. Chem. Neue Folge 111, 1–5.CrossRefGoogle Scholar
- Semm, P., Nohr, D., Demaine, C., Wiltschko, W., 1984. Neural basis of the magnetic compass: interaction of visual, magnetic and vestibular inputs in the pigeon’s brain. J. Comp. Physiol. A 155, 283–288.CrossRefGoogle Scholar
- Semm, P., Demaine, C., 1986. Neurophysiological properties of magnetic cells in the pigeon’s visual system. J. Comp. Physiol. A 159, 619–625.PubMedCrossRefGoogle Scholar
- Stapput, K., Thalau, P., Wiltschko, R., Wiltschko, W., 2008. Orientation of birds in total darkness. Curr. Biol. 18, 602–606.PubMedCrossRefGoogle Scholar
- Stein, B.E., Meredith, M.A., 1993. The Merging of the Senses. The MIT Press, Cambridge, MA.Google Scholar
- Stein, B.E., Stanford, T.R., 2008. Multisensory integration: current issues from the perspective of the single neuron. Nat. Rev. Neurosci. 9, 255–266.PubMedCrossRefGoogle Scholar
- Stuchlik, A., Fenton, A.A., Bures, J., 2001. Substratal idiothetic navigation of rats is impaired by removal or devaluation of extramaze and intramaze cues. Proc. Natl. Acad Sci. U.S.A. 98, 3537–3542.PubMedPubMedCentralCrossRefGoogle Scholar
- Tesch, F., Lelek, A., 1973. Directional behaviour of transplanted stationary and migratory forms of the eel, Anguilla anguilla, in a circular tank. Neth. J. Sea Res. 7, 46–52.CrossRefGoogle Scholar
- Thalau, P., Ritz, T., Burda, H., Wegner, R.E., Wiltschko, R., 2006. The magnetic compass mechanisms of birds and rodents are based on different physical principles. J. R. Soc. Interface 3, 583–587.PubMedPubMedCentralCrossRefGoogle Scholar
- Thoss, F., Bartsch, B., 2003. The human visual threshold depends on direction and strength of a weak magnetic field. J. Comp. Physiol. A 189, 777–779.CrossRefGoogle Scholar
- Thoss, F., Bartsch, B., Tellschaft, D., Thoss, M., 1999. Periodic inversion of the vertical component of the Earth’s magnetic field influences fluctuations of visual sensitivity in humans. Bioelectromagnetics 20, 459–461.PubMedCrossRefGoogle Scholar
- Thoss, F., Bartsch, B., Fritzsche, B., Tellschaft, D., Thoss, M., 2000. The magnetic field sensitivity of the human visual system shows resonance and compass characteristic. J. Comp. Phys. A 186, 1007–1010.CrossRefGoogle Scholar
- Thoss, F., Bartsch, B., Tellschaft, D., Thoss, M., 2002. The light sensitivity of the human visualsystem depends on the direction of view. J.Comp. Physiol.A188, 235–237.Google Scholar
- Vácha, M., Kvicalova, M., Puzova, T., 2010. American cockroaches prefer four cardinal geomagnetic positions at rest. Behaviour 147, 425–440.CrossRefGoogle Scholar
- Vargas, J.P., Siegel, J.J., Bingman, V.P., 2006. The effects of a changing ambient magnetic field onsingle-unit activity in the homing pigeon hippocampus. Brain Res. Bull. 70, 158–164.PubMedCrossRefPubMedCentralGoogle Scholar
- Walker, M.M., Bitterman, M., 1989. Honeybees can be trained to respond to very small changes in geomagnetic field intensity. J. Exp. Biol. 145, 489–494.Google Scholar
- Walker, M.M., Diebel, C.E., Haugh, C.V., Pankhurst, P.M., Montgomery, J.C., Green, C.R., 1997. Structure and function of the vertebrate magnetic sense. Nature 390, 371–376.PubMedCrossRefGoogle Scholar
- Wang, Y., Pan, Y., Parsons, S., Walker, M.M., Zhang, S., 2007. Bats respond to polarity of a magnetic field. Proc. Roy. Soc. B 274, 2901–2905.CrossRefGoogle Scholar
- Wegner, R.E., Begall, S., Burda, H., 2006. Magnetic compass in the cornea: local anaesthesia impairs orientation in a mammal. J. Exp. Biol. 209, 4747–4750.PubMedCrossRefPubMedCentralGoogle Scholar
- Wehner, R., Labhart, T., 1970. Perceptionofthegeomagneticfieldinthefly Drosophila melanogaster. Cell. Mol. Life Sci. 26, 967–968.CrossRefGoogle Scholar
- Westby, G., Partridge, K.J., 1986. Human homing: still no evidence despite geomagnetic controls. J. Exp. Biol. 120, 325.Google Scholar
- Wiltschko, R., Ritz, T., Stapput, K., Thalau, P., Wiltschko, W., 2005. Two different types of light-dependent responses to magnetic fields in birds. Curr. Biol. 15, 1518–1523.PubMedCrossRefPubMedCentralGoogle Scholar
- Wiltschko, R., Stapput, K., Ritz, T., Thalau, P., Wiltschko, W., 2007. Magnetoreception in birds: different physical processes for two types of directional responses. HFSP J. 1, 41–48.PubMedPubMedCentralCrossRefGoogle Scholar
- Wiltschko, R., Stapput, K., Thalau, P., Wiltschko, W., 2010. Directional orientation of birds by the magnetic field under different light conditions. J. R. Soc. Interface 7, 163–177.CrossRefGoogle Scholar
- Wiltschko, R., Wiltschko, W., 1995. Magnetic Orientation in Animals. Springer, Berlin, 297 pp.CrossRefGoogle Scholar
- Wiltschko, R., Wiltschko, W., 2006. Magnetoreceptio. Bioessays 28, 157–168. Wiltschko, W., Wiltschko, R., 1972. Magnetic compass of European robins. Science 176, 62–64.Google Scholar