Advertisement

Mammalian Biology

, Volume 77, Issue 5, pp 327–331 | Cite as

The contribution of the vegetable material layer to the insulation capacities and water proofing of artificial Mus spicilegus mounds

  • Péter SzencziEmail author
  • Dániel Kopcsó
  • Oxána Bánszegi
  • Vilmos Altbäcker
Original Investigation

Abstract

Successful overwintering of small mammals in temperate and cold climates requires behavioural and physiological adaptations. There are several strategies to survive food shortages and the cold. Most species of small mammals use multiple methods simultaneously but nest building and burrowing are the most widespread among them. A well-constructed, dry nest insulates animals from harsh ambient conditions. Mound-building mice build large banks in the autumn and establish a burrow system with nest chambers beneath them. These overwintering structures are built from soil and a considerable amount of plant material. Recent studies presume that the stored vegetable matter does not, or not exclusively, serve as food and indicate that the mounds might have insulating role. To investigate the function of their plant fill, we built artificial mounds with varying plant content, similar to those built by mound-building mice. We measured temperature change at three levels, at the surface, under the mound and at the nest depth, and investigated their water retaining properties. We showed that the plant fill plays a major role in their thermal insulation and waterproofing properties. Mounds reduced temperature variation of the soil and may protect the nest from absorbing precipitation during the winter.

Keywords

Mound-building mouse Overwintering Insulation Burrowing Nest quality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aars, J., Ims, R.A., 2002. Intrinsic and climatic determinants of population demography: the winter dynamics of tundra voles. Ecology 83, 3449–3456.CrossRefGoogle Scholar
  2. Barclay, R.M.R., Lausen, C.L., Hollis, L., 2001. What’s hot and what’s not: defining torpor in free-ranging birds and mammals. Can. J. Zool. 79, 1885–1890.CrossRefGoogle Scholar
  3. Berry, R.J., Jakobson, M.E., Triggs, G.S., 1973. Survival in wild-living mice. Mammal. Rev. 3, 46–57.CrossRefGoogle Scholar
  4. Bethge, P., Munks, S., Otley, H., Nicol, S., 2004. Platypus burrow temperatures at a subalpine Tasmanian lake. Proc. Linn. Soc. N. S. W. 125, 227–273.Google Scholar
  5. Bihari, Z., 2004. A güzüegér magyarországi elterjedése és építo˝ tevékenységének jellemzo˝i. Vadbiológia 10, 107–114.Google Scholar
  6. Bozikova, M., Hlavac, P., 2005. Thermophysical parameters of chosen biological materials. In: Horabik, J., Zdunek, A. (Eds.), BioPhys Spring, 4th International Conference of Young Scientists. Lublin, Poland, pp. 25–26.Google Scholar
  7. Bradshaw, R.H., 1992. The spring decline in a population of field voles, Microtus agrestis, and the onset of severe winter weather. Mammalia 56, 292–295.CrossRefGoogle Scholar
  8. Canady, A., Mosansky, L., Stanko, M., 2009. First knowledge of winter ecology of the Mound-building mouse (Mus spicilegus Petenyi, 1882) from Slovakia. Acta Zool. Bulg. 61, 79–86.Google Scholar
  9. Casey, T.M., 1981. Nest insulation:energysavingstobrown lemmings using a winter nest. Oecologia 50, 199–204.CrossRefGoogle Scholar
  10. Festetics, A., 1961. Ährenmaushügel in Österreich. Z. Saugetierk. 26, 112–125.Google Scholar
  11. Gedeon, C.I., Markó, G., Németh, I., Nyitrai, V., Altbäcker, V., 2010. Nest material selection affects nest insulation quality for the European ground squirrel (Sper-mophilus citellus). J. Mammal. 91, 636–641.CrossRefGoogle Scholar
  12. Geiser, F., 1988. Reduction of metabolism during hibernation and daily torpor in mammals and birds – temperature effect or physiological inhibition. J. Comp. Physiol. B: Biochem. Syst. Environ. Physiol. 158, 25–37.CrossRefGoogle Scholar
  13. Gipps, J.H.W., Flynn, M.P., Gurnell, J., Healing, T.D., 1985. The spring decline in populations of the bank vole, Clethrionomys glareolus, and the role of female density. J. Anim. Ecol. 54, 351–358.CrossRefGoogle Scholar
  14. Glaser, H., Lustick, S., 1975. Energetics and nesting-behavior of northern white-footed mouse, Peromyscus leucopus-noveboracensis. Physiol. Zool. 48, 105–113.CrossRefGoogle Scholar
  15. Grubbauer, P., Hoi, H., 1996. Female penduline tits (Remiz pendulinus) choosing high quality nests benefit by decreased incubation effort and increased hatching success. Ecoscience 3, 274–279.CrossRefGoogle Scholar
  16. Hilton, G.M., Hansell, M.H., Ruxton, G.D., Reid, J.M., Monaghan, P., Brittingham, M., 2004. Using artificial neststotest importance of nesting material and nest shelter for incubation energetics. Auk 121, 777–787.CrossRefGoogle Scholar
  17. Hölzl, M., Hoi, H., Darolova, A., Krištofik, J., Penna, D.J., 2009. Why do the mounds of Mus spicilegus vary so much in size and composition? Mammal. Biol. 74, 308–314.Google Scholar
  18. Hölzl, M., Hoi, H., Darolova, A., Krištofik, J., 2011a. Insulation capacity of litter mounds built by Mus spicilegus: physical and thermal characteristics of building material and the role of mound size. Ethol. Ecol. Evol. 23, 49–59.CrossRefGoogle Scholar
  19. Hölzl, M., Krištofík, J., Darolová, A., Hoi, H., 2011b. Food preferences and mound-building behaviour of the mound-building mice Mus spicilegus. Natur-wissenschaften, 1–8.Google Scholar
  20. Houston, A.I., McNamara, J.M., 1993. A theoretical investigation of the fat reserves and mortality levels of small birds in winter. Ornis. Scand. 24, 205–219.CrossRefGoogle Scholar
  21. Lovegrove, B.G., Raman, J., Perrin, M.R., 2001. Heterothermy in elephant shrews, Elephantulus spp. (Macroscelidea): daily torpor or hibernation. J. Comp. Physiol. B: Biochem. Syst. Environ. Physiol. 171, 1–10.CrossRefGoogle Scholar
  22. McCafferty, D.J., Moncrieff, J.B., Taylor, I.R., 2003. Winter microclimate of field voles (Microtus agrestis) in SW Scotland. J. Therm. Biol. 28, 397–401.CrossRefGoogle Scholar
  23. McGowan, A., Sharp, S.P., Hatchwell, B.J., 2004. The structure and function of nests of long-tailed tits, Aegithalos caudatus. Funct. Ecol. 18, 578–583.Google Scholar
  24. Mertens, J.A.L., 1977. Thermal conditions for successful breeding in great tits (Parus major L.). Oecologia 28, 31–56.CrossRefGoogle Scholar
  25. Murariu, D., 1981. La présence de Mus musculus spicilegus Petenyi, 1882 dans le Delta du Danube accompagné de son ‘parasite’ Apodemus agrarius (Pall., 1771). Travaux Du Museum d’Histoire Naturelle ‘Grigore Antipa’ 23, 297–304.Google Scholar
  26. Naumov, N.P.,1940. Ecologyofthemound-buildermouse Mus musculus hortolanus. Works Institute Evolutionary Morphology USSR 3, pp. 33–76.Google Scholar
  27. Pinowski, J., Hamanb, A., Jerzakc, L., Pinowskaa, B., Barkowskad, M., Grodzkie, A., Hamanf, K., 2006. The thermal properties of some nests of the Eurasian tree sparrow, Passer montanus. J. Therm. Biol. 31, 573–581.CrossRefGoogle Scholar
  28. Pucek, Z., Jedrzejewski, W., Jedrzejewska, B., Pucek, M., 1993. Rodent population-dynamics in a primeval deciduous forest (Bialowieza-National-Park) in relation to weather, seed crop, and predation. Acta Theriol. 38, 199–232.CrossRefGoogle Scholar
  29. Redman, P., Selman, C., Speakman, J.R., 1999. Male short-tailed field voles (Microtus agrestis) build better insulated nests than females. J. Comp. Physiol. B: Biochem. Syst. Environ. Physiol. 169, 581–587.CrossRefGoogle Scholar
  30. Reichman, O.J., Smith, S.C., 1990. Burrows and burrowing behavior by mammals. In: Genoways, H.H. (Ed.), Current Mammalogy. Plenum Press, New York, pp. 197–244.Google Scholar
  31. Serra, J., Hurtado, M.J., Le Négrate, A., Féron, C., Nowak, R., Gouat, P., 2011. Behavioral differentiation during collective building in wild mice Mus spicilegus. Behav. Process. 89, 292–299.CrossRefGoogle Scholar
  32. Sokolov, V.E., Kotenkova, E.V., Michailenko, A.G., 1998. Mus spicilegus. Mammal. Species 592, 1–6.CrossRefGoogle Scholar
  33. StatSoft Inc., 2007. STATISTICA (Data Analysis Software System), 8.0 ed. StatSoft Inc., Tulsa, Oklahoma.Google Scholar
  34. Szenczi, P., Bánszegi, O., Dúcs, A., Gedeon, C.I., Markó, G., Németh, I., Altbäcker, V., 2011. Morphology and function of communal mounds of overwintering mound-building mice (Mus spicilegus). J. Mammal. 92, 852–860.CrossRefGoogle Scholar
  35. Szentirmai, I., Komdeur, J., Székely, T., 2005. What makes a nest-building male successful? Male behavior and female care in penduline tits. Behav. Ecol. 165, 994–1000.CrossRefGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2012

Authors and Affiliations

  • Péter Szenczi
    • 1
    Email author
  • Dániel Kopcsó
    • 1
  • Oxána Bánszegi
    • 1
  • Vilmos Altbäcker
    • 1
  1. 1.Biological Research StationEötvös Loránd UniversityGödHungary

Personalised recommendations