Advertisement

Mammalian Biology

, Volume 77, Issue 5, pp 377–384 | Cite as

Puma spatial ecology in open habitats with aggregate prey

  • L. Mark ElbrochEmail author
  • Heiko U. Wittmer
Original Investigation

Abstract

Solitary felids are commonly associated with structurally complex habitats, where their foraging success is attributed to stealth and remaining undetected by competitive scavengers. Research in North America suggests that pumas (Puma concolor), a wide-ranging species found throughout the Americas, conform to the general characteristics of solitary felids and avoid open grasslands with aggregating prey. Researchers hypothesize that pumas are limited to structurally complex habitats in North America because of pressures from other large, terrestrial competitors. We explored the spatial ecology of pumas in open habitat with aggregating prey in Chilean Patagonia, where pumas lack large, terrestrial competitors. We tracked 11 pumas over 30 months (intensive location data for 9 pumas with GPS collars for 9.33±5.66 months each) in an area where mixed steppe grasslands composed 53% of the study area and carried 98% of available prey biomass, to track resource use relative to availability, assess daily movements, quantify home ranges and calculate their density. As determined by location data and kill sites, Patagonia pumas were primarily associated with open habitats with high prey biomass, but at finer scales, preferentially selected for habitat with complex structure. On average, pumas traveled 13.42 ± 2.50 km per day. Estimated 95% fixed kernel home ranges averaged 98±31.8 km2 for females and 211 ± 138.8 km2 for males, with high spatial overlap within and between the sexes. In a multivariate analysis, available prey biomass was the strongest predictor of variation in the size of an individual puma’s home range. Finally, we determined a total puma density of 3.44 pumas/100 km2, a significantly smaller estimate than previously reported for Patagonia, but similar to densities reported for North America.

Keywords

Home range Lama guanicoe Patagonia Puma concolor Resource use 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bank, M.S., Sarno, R.J., Franklin, W.L., 2003. Spatial distribution of guanaco mating sites in southern Chile: conservation implications. Biol. Conserv. 112, 427–434. Beier, P., 2010. A focal species for conservation planning. In: Hornocker, M., Negri, S. (Eds.), Cougar: Ecology and Conservation. University of Chicago Press, Chicago, pp. 177–190.CrossRefGoogle Scholar
  2. Beyer, H.L., 2004. Hawth’s analysis tools for ArcGIS. http://www.spatialecology.com/htools.Google Scholar
  3. Cooley, H.S., Wielgus, R.B., Koehler, G.M., Maletzke, B.T., 2009. Source populations in carnivore management: cougar demography and emigration in a lightly hunted population. Anim. Conserv. 12, 321–328.CrossRefGoogle Scholar
  4. Corti, P., Shafer, A.B., Coltman, D.W., Festa-Bianchet, M., 2011. Past bottlenecks and current population fragmentation of endangered huemul deer (Hippocamelus bisulcus): implications for preservation of genetic diversity. Conserv. Genet. 12, 119–128.CrossRefGoogle Scholar
  5. Dasgupta, N., Alldredge, J.R., 2000. A chi-square goodness-of-fit analysis of dependent resource selection data. Biometrics 56, 402–408.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Dasgupta, N., Alldredge, J.R., 2000. A chi-square goodness-of-fit analysis of dependent resource selection data. Biometrics 56, 402–408.CrossRefGoogle Scholar
  7. Dickson, B.G., Beier, P., 2002. Home range and habitat selection by adult cougars in southern California. J. Wildlife Manage. 66, 1235–1245.CrossRefGoogle Scholar
  8. Elbroch, M., Wittmer, H.U., Saucedo, C., 2010. Swimming by pumas (Puma concolor) in Patagonia: rethinking barriers to puma movement. Stud.Neotrop. Fauna. Environ. 45, 187–190.CrossRefGoogle Scholar
  9. Elbroch, M., Wittmer, H.U., Saucedo, C., Corti, P., 2009. Long-distance dispersal of a Patagonia puma. Rev. Chil. Hist. Nat. 82, 459–461.Google Scholar
  10. Endlicher, W., 1991. Zur klimageographie und klimaökologie von südpatagonien. 100 jahre klimatologische messungen in Punta Arenas. Freiburger Geographis-che Hefte 32, 181–211.CrossRefGoogle Scholar
  11. Ernest, H.B., Boyce, W.M., Bleich, V.C., May, B., Stiver, S.J., Torres, S.G., 2003. Genetic structure of mountain lion (Puma concolor) populations in California. Conserv. Genet. 4, 353–366.CrossRefGoogle Scholar
  12. Fieberg, J., Matthiopoulos, J., Hebblewhite, M., Boyce, M.S., Frair, J.L., 2010. Correlation and studies of habitat selection: problem, red herring or opportunity? Philos. T. R. Soc. B 365, 2233–2244.CrossRefGoogle Scholar
  13. Franklin, W.L., Johnson, W.E., Sarno, R.J., Iriarte, J.A., 1999. Ecology of the Patagonia puma in southern Chile. Biol. Conserv. 90, 33–40.CrossRefGoogle Scholar
  14. Grigione, M.M., Beier, P., Hopkins, R.A., Neal, D., Padley, W.D., Schonewald, C.M., Johnson, M.L., 2002. Ecological and allometric determinants of home-range size for mountain lions (Puma concolor). Anim. Conserv. 5, 317–324.CrossRefGoogle Scholar
  15. Hayward, M.W., Henschel, P., O’Brien, J., Hofmeyr, M., Balme, G., Kerley, G.I., 2006. Prey preferences of the leopard (Panthera pardus). J. Zool. 270, 298– 313.Google Scholar
  16. Heffelfinger, J., 1997. Age Criteria for Arizona Game Species, Special Report #19. Arizona Game and Fish Department, Phoenix.Google Scholar
  17. Hooge, P.N., Eichenlaub, B., 1997. Animal Movement Extension to Arcview. ver. 1.1. Alaska Science Center – Biological Science Office, U.S. Geological Survey, Anchorage, AK, USA.Google Scholar
  18. Iriarte, A., 2008. Mammiferos de Chile. Lynx Editions, Barcelona.CrossRefGoogle Scholar
  19. Johnson, D.H., 1980. The comparison of usage and availability measurements for evaluating resource preference. Ecology 61, 65–71.CrossRefGoogle Scholar
  20. Kelly, M.J., Noss, A.J., Di Bitetti, M.S., Maffei, L., Arispe, R.L., Paviolo, A., De Angelo, C.D., Di Blanco, Y.E., 2008. Estimating puma densities from camera trapping across three study sites: Bolivia, Argentina, and Belize. J. Mammal. 89, 408– 418.CrossRefGoogle Scholar
  21. Kie, J.G., Matthiopoulos, J., Fieberg, J., Powell, R.A., Cagnacci, F., Mitchell, M.S., Gaillard, J.M., Moorcroft, P.R., 2010. The home-range concept: are traditional estimators still relevant with modern telemetry technology? Philos. T. R. Soc. B 365, 2221–2231.CrossRefGoogle Scholar
  22. Lamprecht, J., 1978. The relationship between food competition and foraging group size in some larger carnivores: a hypothesis. Tierpsychol. 46, 337–343.CrossRefGoogle Scholar
  23. Laundré, J.W., 2005. Puma energetics: a recalculation. J. Wildlife Manage. 69, 723–732.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Laundré, J.W., 2010. Behavioral response races, predator–prey shell games, ecology of fear, and patch use of pumas and their ungulate prey. Ecology 91, 2995– 3007.Google Scholar
  25. Laundré, J.W., Hernández, L., Streubel, D., Altendorf, K., González, C.L., 2000. Aging mountain lions using gum-line recession. Wildlife Soc. B 28, 963–966.Google Scholar
  26. Logan, K.A., Sweanor, L.L., 2001. Desert Puma: Evolutionary Ecology and Conservation of an Enduring Carnivore. Island Press, Washington.Google Scholar
  27. Logan, K.A., Sweanor, L.L., 2010. Behavior and social organization of a solitary carnivore. In: Hornocker, M., Negri, S. (Eds.), Cougar: Ecology and Conservation. University of Chicago Press, Chicago, pp. 105–117.Google Scholar
  28. MacDonald, D.W., Loveridge, A.J., 2010. Biology and Conservation of Wild Felids. Oxford University Press, Oxford.PubMedCrossRefPubMedCentralGoogle Scholar
  29. McRae, B.H., Beier, P., DeWald, L.E., Huynh, L.Y., Keim, P., 2005. Habitat barriers limit gene flow and illuminate historical events in a wide-ranging carnivore, the American puma. Mol. Ecol. 14, 1965–1977.CrossRefGoogle Scholar
  30. McLellan, B.N., 1989. Dynamics of a grizzly bear population during a period of industrial resource extraction: density and age-sex composition. Can. J. Zool. 67, 1856–1860.CrossRefGoogle Scholar
  31. Mohr, C.O., 1947. Table of equivalent populations of North American small mammals. Am. Midl. Nat. 37, 223–249.CrossRefGoogle Scholar
  32. Mosser, A., Packer, C., 2009. Group territoriality and the benefits of sociality in the African lion, Panthera leo. Anim. Behav. 78, 359–370.Google Scholar
  33. Murphy, K., Ruth, T., 2010. Diet and prey selection of a perfect predator. In: Hornocker, M., Negri, S. (Eds.), Cougar: Ecology and Conservation. University of Chicago Press, Chicago, pp. 118–137.CrossRefGoogle Scholar
  34. Novaro, A.J., Funes, M.C., Walker, R.S., 2000. Ecological extinction of native prey of a carnivore assemblage in Argentine Patagonia. Biol. Conserv. 92, 25–33.Google Scholar
  35. Quigley, H., Hornocker, M., 2010. Cougar population dynamics. In: Hornocker, M., Negri, S. (Eds.), Cougar: Ecology and Conservation. University of Chicago Press, Chicago, pp. 59–75.Google Scholar
  36. Raedeke, K.J., 1979. Population dynamics and socio-ecology of the guanaco (Lama guanicoe) of Magallanes, Chile. Ph.D. Dissertation, Univ. Washington, 409 pp. Riley, S.J., Nesslage, G.M., Maurer, B.A., 2004. Dynamics of early wolf and cougar eradication efforts inMontana: implications for conservation. Biol. Conserv. 119, 575–579.Google Scholar
  37. Ruth, T., Murphy, K., 2010. Competition with other carnivores for prey. In: Hornocker, M., Negri, S. (Eds.), Cougar: Ecology and Conservation. University of Chicago Press, Chicago, pp. 163–174.CrossRefGoogle Scholar
  38. Ruth, T.K., Haroldson, M.A., Murphy, K.M., Buotte, P.C., Hornocker, M.G., Quigley, H.B., 2011. Cougar survival and source-sink structure on Greater Yellowstone’s Northern Range. J. Wildlife Manage. 75, 1381–1398.CrossRefGoogle Scholar
  39. Schmidt, K., 2008. Behavioural and spatial adaptation of the Eurasian lynx to a decline in prey availability. Acta Theriol. 53, 1–16.CrossRefGoogle Scholar
  40. Seaman, D.E., Powell, R.A., 1996. An evaluation of the accuracy of kernel density estimators for home range analysis. Ecology 77, 2075–2085.Google Scholar
  41. Steel, R.G., Torrie, J.H., Dickey, D.A., 1997. Principles and Procedures of Statistics, 3rd ed. McGraw-Hill, New York.CrossRefGoogle Scholar
  42. Sunquist, M., Sunquist, F., 2002. Wild Cats of the World. University of Chicago Press, Chicago.PubMedCrossRefPubMedCentralGoogle Scholar
  43. Torres, H., 1992. IUCN/SSC South American Camelid Specialist Group. Gland, 58 pp.Google Scholar
  44. Torres, H., 1992. IUCN/SSC South American Camelid Specialist Group. Gland, 58 pp. Walker, S., Novaro, A., 2010. The world’s southernmost puma in Patagonia and the southern Andes. In: Hornocker, M., Negri, S. (Eds.), Cougar: Ecology and Conservation. University of Chicago Press, Chicago, pp. 91–99.Google Scholar
  45. Williams, J.S., McCarthy, J.J., Picton, H.D., 1995. Cougar habitat use and food habits on the Montana Rocky Mountain Front. Intermt. J. Sci. 1, 16–28.Google Scholar
  46. Wittmer, H.U., Corti, P., Saucedo, C., Galaz, J.L., 2010. Learning to count: adapting population monitoring for endangered huemul deer to meet conservation objectives. Oryx 44, 516–522.CrossRefGoogle Scholar
  47. Worton, B.J., 1989. Kernel methods for estimating the utilization distribution in home-range studies. Ecology 70, 164–168.CrossRefGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2012

Authors and Affiliations

  1. 1.Wildlife, Fish, and Conservation BiologyUniversity of CaliforniaDavisUSA
  2. 2.School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand

Personalised recommendations