Mammalian Biology

, Volume 77, Issue 1, pp 47–52 | Cite as

At-sea behavior of South American fur seals: Influence of coastal hydrographic conditions and physiological implication

  • Mariela DassisEmail author
  • Marcelo Farenga
  • Ricardo Bastida
  • Diego Rodríguez
Original Investigation


At-sea behavior and effects of hydrographic conditions on the pelagic habitat use of South American fur seals (Arctocephalus australis) seasonally inhabiting the surrounding waters of shallow rocky reefs off Punta Mogotes (Mar del Plata, Argentina) were analyzed integrating geographic locations of fur seal groups (FSGs) with coastal hydrographic conditions and behavioral data in a Geographic Information System. Punta Mogotes rocky reefs represent a potentially high quality patch foraging area, crucial to a central place foraging species during their pelagic dispersion at sea. Fur seal behavior at-sea was strongly influenced by hydrographic conditions such us bathymetry, Beafourt sea state and sea surface current direction. Fur seals General Use Area (GUA) was associated with the 10 m isobaths, whereas Critical Use Area(CUA) was almost completely enclosed within the 5 m isobaths. A concentration-dispersion dynamic trend according to sea state was evident (GUA Beafourt ≤ 3 = 3.3 km2 vs. GUA Beafourt > 3=1.7 km2), with a “use area displacement” according to sea surface current direction. A general prevalence of long, at-sea resting periods (passive floating was the most frequently performed behavior, and usually for long periods) and a differential occurrence of each behavior associated with Beafourt sea states were detected. During calm seas (Beafourt ≤3), fur seals exhibit passive floating, occupying extended areas, and drifting according to sea surface current direction. With increasing sea states (Beafourt sea state >3), fur seals tended to perform shallow prolonged immersion and directional movements, and concentrated in restricted areas weakly affected by currents. The importance of floating periods at-sea, probably associated with resting and digestion, was interpreted as an energy conserving strategy that would allow an increase overall foraging efficiency. Results suggested that the ability of fur seals to perform certain behaviors that will allow completing physiological process and ultimately determine reproduction and survival success, would be conditioned by the hydrographic regime at foraging areas. This last could be extrapolated to other fur seal species spending long times at-sea, both as part of migration movements or during typical long foraging round trips.


Arctocephalus australis At-sea behavior Pelagic dispersion Hydrographic conditions Bathymetry Foraging Thermoregulation Resting 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altmann, J., 1974. Observational study of behavior: sampling methods. Behaviour 49, 227–267.PubMedPubMedCentralGoogle Scholar
  2. Bartholomew, G.A.,1970. Amodel for the evolution of pinnipeds polygyny. Evolution 24, 546.CrossRefGoogle Scholar
  3. Bastida, R., Rodríguez, D., 1994. Hallazgo de un apostadero estacional de lobos marinos de dos pelos, Arctocephalus australis (Zimmerman, 1783), en bajos fondos frente a la costa de Mar del Plata (Provincia de Buenos Aires, Argentina). Proc 4th Latin. Amer.Workshop Aquat. Mamm. CONICYT, Chile. 1-22.Google Scholar
  4. Bastida, R., Rodríguez, D., 2003. Mamíferos Marinos de Patagonia y Antártida. Vázquez Mazzini Editores, Buenos Aires.Google Scholar
  5. Carrara, I.S., 1952. Lobos marinos, pingüinos y guaneras de las costas del litoral marítimo e islas adyacentes de la República Argentina. Special publication of the Veterinarian Sciences Faculty, La Plata National University, Argentina.Google Scholar
  6. Celemin, A.H, 1984. Meteorologia practica. Author edition accepted by the Militar Geographic Institute. Mar del Plata, Argentina.Google Scholar
  7. Charnov, E.L., 1976. Optimal foraging, the marginal value theorem. Theor. Popul. Biol. 9, 129.CrossRefGoogle Scholar
  8. Costa, D.P., Croxall, J.P., Duck, C.D., 1989. Foraging energetic of Antarctic fur seals in relation to changes in prey availability. Ecology 70 (3), 596–606.CrossRefGoogle Scholar
  9. Dassis,M.,2005.Utilización del hábitat costero de Mardel Plata por Lobos Marinos de dos Pelos: su análisis a través de Sistemas de Información Geográfica. BSc (Hon) dissertation, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina.Google Scholar
  10. Dixon, K.R., Chapman, J.A., 1980. Harmonic mean measure of animal activity areas. Ecology 61, 1040–1044.CrossRefGoogle Scholar
  11. Flores, P.C., Bazzalo, M., 2004. Home ranges and movement patterns of the marine tucuxi dolphin, Sotalia fluviatilis,in Bahia Norte, Southern Brazil. Lat. Am. J. Aquat. Mamm. 1, 37–52.Google Scholar
  12. Gentry, R.L., Kooyman, G.L., 1986. Fur Seals: Maternal Strategies on Land and at Sea. Princeton University Press, New Jersey.CrossRefGoogle Scholar
  13. Gerpe, M.S., Ponce de León, A., Bastida, R.O., Moreno, V.J., Rodríguez, D.H., 2009. Sharp accumulation of heavy metals after weaning in the South American fur seal, Arctocephalus australis. Mar. Ecol. Prog. Ser. 375, 239–245.CrossRefGoogle Scholar
  14. Gubbins, C., 2002. Use of home ranges by bottlenose dolphins (Tursiops truncatus) in a South Carolina Estuary. J. Mammal. 83 (1), 178–187.CrossRefGoogle Scholar
  15. Heide-Jørgensen, M.P., Dietz, R., Laidre, K.L., Richard, P., 2002. Autumn movements, home ranges, and winter density of narwhals (Monodon monoceros) tagged in Tremblay Sound, Baffin Island. Polar Biol. 25, 331–341.Google Scholar
  16. Hind, A.T., Gurvey, W.S.C., 1997. The metabolic cost of swimming in marine homeotherms. J. Exp. Biol. 200, 531–542.PubMedGoogle Scholar
  17. Ingram, S.N., Rogan, E., 2002. Identifying critical areas and habitat preferences of bottlenose dolphins Tursiops truncatus. Mar. Ecol. Prog. Ser. 244, 247–255.CrossRefGoogle Scholar
  18. Kie, J.G., Baldwin, J.A., Evans, C.J., 1996. CALHOME: a program for estimating animal home ranges. Wildl. Soc. Bull. 24, 342–344.Google Scholar
  19. Kooyman, G.L., Gentry, R.L., Urquhart, D.L., 1976. Northern fur seals diving behavior: a new approach to its study. Science 193, 411.CrossRefGoogle Scholar
  20. Liwanag, H.E.M., Williams, T.M., Costa, D.P., Kanatous, S.B., Davis, R.W., Boyd, I.L., 2009. The effects of water temperature on the energetic costs of juvenile and adult California sea lions (Zalophus californianus): the importance of skeletal muscle thermogenesis for thermal balance. J. Exp. Biol. 212, 3977–3984.CrossRefGoogle Scholar
  21. MacArthur, R.H., Pianka, E.R., 1966. On optimal use of a patchy environment. Am. Nat. 100 (916), 603–609.CrossRefGoogle Scholar
  22. Martin, P., Bateson, P., 1993. Measuring Behaviour: An Introductory Guide, 2nd ed. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  23. Martos, P., Reta, R., Guerrero, R.A., 2004. EL ambiente físico de las Costas Marplatenses: su clima y sus aguas. In: Boschi, E.E., Cousseau, B. (Eds.), La vida entre mareas: vegetales y animales de las costas de Mar del Plata, Argentina. , 1st ed. Instituto Nacional de Investigación y Desarrollo Pesquero; Secretaria de Agricultura, Ganaderia, Pesca y Alimentos, Mar del Plata, Republica Argentina, pp. 29–42.Google Scholar
  24. McConnell, B.J., Fedak, M.A., Lovell, P., Hammond, P.S., 1999. Movements and foraging areas of grey seals in the North Sea. J. Appl. Ecol. 36, 573–590.CrossRefGoogle Scholar
  25. Mohr, C.O., 1947. Table of equivalent populations of North American small mammals. Am. Mid. Nat. 37, 223–249.CrossRefGoogle Scholar
  26. Naya, D.E., Arim, M., Vargas, R., 2002. Diet of South American fur seals (Arctocephalus australis) in Isla de Lobos, Uruguay. Mar. Mamm. Sci. 18, 734–745.CrossRefGoogle Scholar
  27. Pike, D.A., Reeder, T.W., 2006. Movement patterns, habitat use, and growth of hatchling tortoises, Gopherus polyphemus. Copeia 1, 68–76.CrossRefGoogle Scholar
  28. Poncede León, A., Pin, O.D., 2006. Distribución, reproducción y alimentación del lobo fino Arctocephalus australis y del león marino Otaria flavescens en Uruguay. In: Menafra, R., Rodríguez-Gallego, L., Scarabino, F., Conde, D. (Eds.), Bases para la conservación y el manejo de la costa uruguaya. Vida Silvestre, Uruguay, Monte¬video, pp. 305–314.Google Scholar
  29. Pyke, G.H., 1984. Optimal foraging theory: a critical review. Annu. Rev. Ecol. Syst. 15, 523–575.CrossRefGoogle Scholar
  30. Rodríguez, D.H., 1996. Biología y Ecología de los Pinípedos del sector bonaerense. PhD dissertation, Universidad Nacional de Mar del Plata, Mar del Plata (Argentina).Google Scholar
  31. Rosen, D.A.S., Winship, A.J., Hoopes, L.A., 2007. Thermal and digestive constraints to foraging behaviourin marine mammals. Phil. Trans. Roy. Soc.B362, 2151–2168.CrossRefGoogle Scholar
  32. Samuel, M.D., Pierce, D.J., Garton, E.O., 1985. Identifying areas of concentrated use within the home range. J. Anim. Ecol. 54, 711–719.CrossRefGoogle Scholar
  33. Takekawa, J.Y., Warnock, N., Martinelli, G.M., Miles, A.K., Tsao, D.C., 2002. Waterbird use of bayland wetlands in the San Francisco Bay Estuary: movements of long-billed dowitchers during the winter. Waterbirds 25, 93–105.CrossRefGoogle Scholar
  34. Te Wong, S., Servheen, C.W., Ambu, L., 2004. Home range, movement and activity patterns, and bedding sites of Malayan sun bears Helarctos malayanus in the Rainforest of Borneo. Biol. Cons. 119, 169–181.CrossRefGoogle Scholar
  35. Thompson, D., Moss, S.E.W., Lovell, P., 2003. Foraging behaviour of South American fur seals Arctocephalus australis: extracting fine scale foraging behaviour from satellite tracks. Mar. Ecol. Prog. Ser. 260, 285–296.CrossRefGoogle Scholar
  36. Vaz-Ferreira, R., 1982. Arctocephalus australis (Zimmermann), South American fur seal. FAO Fish. Ser. 4, 497–508.Google Scholar
  37. Vaz-Ferreira, R., Ponce de León, A., 1987. South American fur seal, Arctocephalus australis, in Uruguay. In: Croxall, J.P., Gentry, R.L. (Eds.), Status, biology and ecology of fur seals. NOAA Tech. Rep. 51, 29–32.Google Scholar
  38. Volampeno, M.S.N., Masters, J.C., Downs,C.T., 2011.Home range size in the blue-eyed black lemur (Eulemeur flavifrons): a comparison between dry and wet seasons. Mammal. Biol. 76 (2), 157–164.CrossRefGoogle Scholar
  39. Wedekin, L.L., Daura-Jorge, F.G., Piacentini, V.Q., Simões-Lopes, P.C., 2007. Seasonal variations in spatial usage by the estuarine dolphin, Sotalia guianensis (van Béné-den, 1864) (Cetacea; Delphinidae) at its southern limit of distribution. Braz. J. Biol. 67, 1–8.CrossRefGoogle Scholar
  40. Williams, T.M., Davis, R.W., Fuiman, L.A., Francis, J., LeBoeuf, B.J., Horning, M., Calam-bokidis, J., Croll, D.A., 2000. Sink or swim: strategies for cost-efficient diving by marine mammals. Science 288, 133–136.CrossRefGoogle Scholar
  41. Ximenez, I., 1986. Aprovechamiento de lobos marinos. Informe Final del Proyecto Especial 16, Programa Regional de Desarrollo Científico y Tecnológico, Organi-zación de los Estados Americanos.Google Scholar
  42. Zar, J.H., 1984. Biostatistical Analysis. Prentice Hall Inc., Englewood Cliffs.Google Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2011

Authors and Affiliations

  • Mariela Dassis
    • 1
    • 3
    Email author
  • Marcelo Farenga
    • 2
  • Ricardo Bastida
    • 1
    • 3
  • Diego Rodríguez
    • 1
    • 3
  1. 1.Instituto de Investigaciones Marinas y Costeras, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata - CONICETMar del PlataArgentina
  2. 2.Instituto de Geología de Costas y del Cuaternario, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del PlataMar del PlataArgentina
  3. 3.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Argentina

Personalised recommendations