Mammalian Biology

, Volume 76, Issue 4, pp 491–497 | Cite as

Factors affecting roe deer occurrence in a Mediterranean landscape, Northeastern Portugal

  • Rita Tinoco TorresEmail author
  • João Santos
  • John D. C. Linnell
  • Emílio Virgós
  • Carlos Fonseca
Original Investigation


The European roe deer population in Portugal is on the southwestern edge of its distribution. Understanding limiting factors that act on these populations enlightens both local aspects concerning their conservation and wider scale aspects of the species bioclimatic envelope, which is crucial for being better able to predict the impacts of environmental change. Accordingly, a survey was conducted to explore roe deer distribution in a 75,000 ha area located in Trás-os-Montes region, a Mediterranean landscape in the northeast of Portugal. Pellet-group counts were used to examine how roe deer distribution was related to habitat structure and composition, landscape structure, and human disturbance. The analysis considered two spatial scales: habitat patch and the wider landscape. At the patch scale, roe deer distribution was positively associated with high density of shrubs and with increasing distance from roads. At the landscape scale, roe deer distribution was negatively associated with spatial heterogeneity, namely mean shape index. Our findings suggest that landscape structure, vegetation composition and distance to roads are all important factors influencing roe deer distribution, highlighting the importance of multi-scale approaches.


Capreolus capreolus Canis lupus signatus Habitat use Scale Portuguese Mediterranean ecossystem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acevedo, P., Delibes-Mateos, M., Escudero, M.A., Vicente, J., Marco, J., Gortazar, C., 2005. Environmental constraints in the colonization sequence of roe deer (Capreolus capreolus Linnaeus, 1758) across the Iberian Mountains, Spain. J. Biogeogr. 32, 1671–1680.CrossRefGoogle Scholar
  2. Apollonio, M., Andersen, R., Putman, R., 2010. European Ungulates and Their Management in the 21st Century. Cambridge University Press, New York.Google Scholar
  3. Aragón, S., Braza, F., San José, C., 1995. Socioeconomic, physiognomic, and climatic factors determining the distribution pattern of roe deer Capreolus capreolus in Spain. Acta Theriol. 40, 37–43.CrossRefGoogle Scholar
  4. Boitani, L., 2000. Action Plan for the Conservation of Wolves (Canis lupus) in Europev, vol. 113. Nature and Environment, Council of Europe Publishing, pp. 1–86.Google Scholar
  5. Borkowski, J., 2004. Distribution and habitat use by red and roe deer following a large forest fire in South-western Poland. Forest Ecol. Manage. 201, 287–293.CrossRefGoogle Scholar
  6. Borkowski, J., Ukalska, J., 2008. Winter habitat use by red and roe deer in pine-dominated forest. Forest Ecol. Manage. 255, 468–475.CrossRefGoogle Scholar
  7. Brewka, A., Kossak, S., 1994. The influence of atmospheric conditions on the mobility of roe deer (Capreolus capreolus L.) in winter. Ekol. Pol. 40, 225–237.Google Scholar
  8. Burnham, K.P., Anderson, D.R., 1998. Model Selection and Multi-model Inference: A Practical Information-theoretic Approach. Springer, New York.CrossRefGoogle Scholar
  9. Carvalho, P., Nogueira, A.J.A., Soares, A.M.V.M., Fonseca, C., 2008. Ranging behaviour of translocated roe deer in a Mediterranean habitat: seasonal and altitudinal influences on home range size and patterns of range use. Mammalia 72, 89–94.CrossRefGoogle Scholar
  10. Collins, W.B., Urness, P.J., 1981. Habitat preferences of mule deer as rated by pellet-group distributions. J. Wildl. Manage. 45, 969–972.CrossRefGoogle Scholar
  11. Copeland, H.E., Tessman, S.A., Girvetz, E.H., Roberts, L., Enquist, C., Orabona, A., Patla, S., Kiesecker, J., 2010. Ageospatial assessment on the distribution, condition, and vulnerability of Wyoming’s wetlands. Ecol. Indic. 10, 869–879.CrossRefGoogle Scholar
  12. Creel, S., Winnie, J., Maxwell, B., Hamlin, K., Creel, M., 2005. Elk alter habitat selection as an antipredator response to wolves. Ecology 86, 3387–3397.CrossRefGoogle Scholar
  13. Cushman, A.S., McGarigal, K., 2004. Patterns in the species-environment relationship depend on both scale and choice of response variables. Oikos 105, 117–124.CrossRefGoogle Scholar
  14. Demment, M.W., Soest, P.J.V., 1985. A nutritional explanation for body-size patterns of ruminant and nonruminant herbivores. Am. Nat. 125, 641–672.CrossRefGoogle Scholar
  15. Dunning, J.B., Danielson, B.J., Pulliam, H.R., 1992. Ecological processes that affect populations in complex landscapes. Oikos 65, 169–175.CrossRefGoogle Scholar
  16. Edge, W.D., Marcum, C.L., 1989. Determining elk distribution with pellet-group and telemetry techniques. J. Wildl. Manage. 53, 621–624.CrossRefGoogle Scholar
  17. Faria, A.M.S., 1999. Dieta de corço (Capreolus capreolus L.) no Centro e Nordeste de Portugal. M.Sc. thesis, Department of Zoology, The University of Coimbra, Coimbra.Google Scholar
  18. Fortin, D., Beyer, H.L., Boyce, M.S., Smith, D.W., Duchesne, T., Mao, J.S., 2005. Wolves influence elk movement: behavior shapes a trophic cascade in Yellowstone National Park. Ecology 86, 1320–1330.CrossRefGoogle Scholar
  19. Gill, R.M.A., Johnson, A.L., Francis, A., Hiscocks, K., Peace, J.A., 1996. Changes in roe deer (Capreolus capreolus L.) population density in response to forest habitat succession. Forest Ecol. Manage. 88, 31–41.CrossRefGoogle Scholar
  20. Gonçalves, D.A., 1980. O meio Natural. O Parque Natural de Montesinho. Serviço Nacional de Parques e Reservas e Património Paisagístico.Google Scholar
  21. Graham, M.H., 2003. Confronting multicollinearity in ecological multiple regression. Ecology 84, 2809–2815.CrossRefGoogle Scholar
  22. Guillet, C., Bergstrom, R., Cederlund, G., Bergstrom, J., Ballon, P., 1995. Comparison of telemetry and pellet-group counts for determining habitat selectivity by roe deer (Capreolus capreolus) in winter. Gibier Faune Sauvage. 12, 253–269.Google Scholar
  23. Guisan, A., Thuiller, W., 2005. Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 8, 993–1009.CrossRefGoogle Scholar
  24. Hebblewhite, M., Merrill, E.H., McDonald, T.L., 2005. Spatial decomposition of predation risk using resource selection functions: an example in a wolf-elk predator-prey system. Oikos 111, 101–111.CrossRefGoogle Scholar
  25. Heithaus, M.R., Wirsing, A.J., Burkholder, D., Thomson, J., Dill, L.M., 2009. Towards a predictive framework for predator risk effects: the interaction of landscape features and prey escape tactics. J. Appl. Ecol. 78, 556–562.CrossRefGoogle Scholar
  26. Hemami, M.R., Watkinson, A.R., Dolman, P.M., 2004. Habitat selection by sympatric muntjac (Muntiacus reevesi) and roe deer (Capreolus capreolus) in a lowland commercial pine forest. For. Ecol. Manage. 194, 49–60.CrossRefGoogle Scholar
  27. Hewison, A.J., Vincent, J.P., Joachim, J., Angibault, J.M., Cargnelutti, B., Cibien, C., 2001. The effects of woodland fragmentation and human activity on roe deer distribution in agricultural landscapes. Can. J. Zool. 79, 679–689.CrossRefGoogle Scholar
  28. Hoffmann, A.A., Blows, M.W., 1994. Species borders: ecological and evolutionary perspectives. Trends Ecol. Evol. 9, 223–227.PubMedCrossRefPubMedCentralGoogle Scholar
  29. Holt, R.D., Keitt, T.H., 2005. Species’ borders: a unifying theme in ecology. Oikos 108, 3–6.CrossRefGoogle Scholar
  30. Jędrzejewski, W., Jędrzejewska, B., Okarma, H., Ruprecht, A.L., 1992. Wolf predation and snow coveras mortality factors in the ungulate community of the Bialowieża National Parkm, Poland. Oecologia 90, 27–36.PubMedCrossRefGoogle Scholar
  31. Jędrzejewski, W., Schmidt, K., Theuerkauf, J., Jędrzejewski, B., Selva, N., Zub, K., Szymura, L., 2002. Kill rates and predation by wolves on ungulate populations in Białowieża Primeval forest (Poland). Ecology 83, 1341–1356.Google Scholar
  32. Jepsen, J.U., Topping, C.J., 2004. Modelling roe deer (Capreolus capreolus) in a gradient of forest fragmentation: behavioural plasticity and choice of cover. Can. J. Zool. 82, 1528–1541.CrossRefGoogle Scholar
  33. Jiang, G., Ma, J., Zhang, M.H., 2006. Spatial distribution of ungulate responses to habitat factors in Wandashan forest region, northeastern China. J. Wildl. Manage. 70, 1470–1476.CrossRefGoogle Scholar
  34. Jiang, G., Ma, J., Zhang, M., Stott, P., 2009. Multiple spatial-scale resource selection function models in relation to human disturbance for moose in northeastern China. Ecol. Res. 24, 423–440.CrossRefGoogle Scholar
  35. Kie, J.G., Bowyer, R.T., Nicholson, M.C., Boroski, B.B., Loft, E.R., 2002. Landscape heterogeneity at differing scales: effects on spatial distribution of mule deer. Ecology 83, 530–544.CrossRefGoogle Scholar
  36. Kjostvedt, J., Mysterud, A., Ostbye, E., 1998. Roe deer Capreolus capreolus use of agricultural crops during winter in the Lier valley, Norway. Wildl. Biol. 4, 23–31.CrossRefGoogle Scholar
  37. Kremsater, L.L., Bunnell, F.L., 1992. Testing responses to forest edges: the example of black-tailed deer. Can. J. Zool. 70, 2426–2435.CrossRefGoogle Scholar
  38. Kunkel, E.K., Pletscher, D.H., 2000. Habitat factors affecting vulnerability of moose to predation by wolves in southeastern British Columbia. Can. J. Zool. 78, 150–157.CrossRefGoogle Scholar
  39. Lamberti, P., Mauri, L., Merli, E., Dusi, S., Apollonio, M., 2006. Use of space and habitat selection by roe deer Capreolus capreolus in a Mediterranean coastal area: how does woods landscape affect home range? J. Ethol. 24, 181–188.CrossRefGoogle Scholar
  40. Lande, R., 1993. Risks of population extinction from demographic and environmental stochasticity and random catastrophes. Am. Nat. 142, 911–927.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Lemmon, P.E., 1956. A spherical densiometer for estimating forest overstory density. Forest Sci. 2, 314–320.Google Scholar
  42. Loft, E.R., Kie, J.G., 1988. Comparison of pellet-group and radio triangulation methods for assessing deer habitat use. J. Wildl. Manage. 52, 524–527.CrossRefGoogle Scholar
  43. Mander, Ü., Mikk, M., Külvik, M., 1999. Ecological and low intensity agriculture as contributors to landscape and biological diversity. Landscape Urban Plann. 46, 169–177.CrossRefGoogle Scholar
  44. Marques, F.F.C., Buckland, S.T., Goffin, D., Dixon, C.E., Borchers, D.L., Mayle, B.A., Peace, A.J., 2001. Estimating deer abundance from line transect surveys of dung: sika deer in southern Scotland. J. Appl. Ecol. 38, 349–363.CrossRefGoogle Scholar
  45. Massé, A., Côté, S.D., 2009. Habitat selection of a large herbivore at high density and without predation: trade-off between forage and cover? J. Mammal. 90, 961–970.CrossRefGoogle Scholar
  46. Mayle, B.A., Peace, A.J., Gill, R.M.A., 1999. How many deer? A field guide to estimating deer population size, Forestry Commission. Field book, 18.Google Scholar
  47. Mayle, B.A., Putman, R.J., Wyllie, I., 2000. The use of trackway counts to establish an index of deer presence. Mamm. Rev. 30, 233–237.CrossRefGoogle Scholar
  48. Melis, C., Jędrzejewski, B., Apollonio, M., Barto, K.A., Jędrzejewski, W., Linnell, J.D.C., Kojola, I., Kusak, J., Adamic, M., Ciuti, S., Delehan, I., Dykyy, I., Krapinec, K., Mattioli, L., Sagaydak, A., Samchuk, N., Schmidt, K., Shkvyrya, M., Sidorovich, V.E., Zawadzka, B., Zhyla, S., 2009. Predation has a greater impact in less productive environments: variation in roe deer, Capreolus capreolus, population density across Europe. Global Ecol. Biogeogr. 18, 724–734.CrossRefGoogle Scholar
  49. Molinari-Jobin, A., Molinari, P., Breitenmoser-Wuersten, C., Breitenmoser, U., 2002. Significance of lynx Lynx lynx predation for roe deer Capreolus capreolus and chamois Rupicapra rupicapra mortality in the Swiss Jura Mountains. Wildl. Biol. 8, 109–115.CrossRefGoogle Scholar
  50. Moreira, L.M., Rosa, J.L., Lourenco, J., Barroso, I., Pimenta, V., 1997. Projecto Lobo. Relatório de Progressão 1996 (Cofinanciado pela U. E. — Programa LIFE). Parque Natural de Montesinho, Braganca.Google Scholar
  51. Mysterud, A., 1996. Bed-site selection by adult roe deer Capreolus capreolus in southern Norway during summer. Wildl. Biol. 2, 101–106.CrossRefGoogle Scholar
  52. Mysterud, A., Østbye, E., 1999. Cover as a habitat element for temperate ungulates: effects on habitat selection and demography. Wildl. Soc. Bull. 27, 385–394.Google Scholar
  53. Neff, D.J., 1968. The pellet-group count technique for big game trend, census, and distribution: a review. J. Wildl. Manage. 32, 597–614.CrossRefGoogle Scholar
  54. Nilsen, E.B., Gaillard, J.M., Andersen, R., Odden, J., Delorme, D., Laere, G.V., Linnell, J.D.C., 2009. A slow life in hell or a fast life in heaven: demographic analyses of contrasting roe deer populations. J. Anim. Ecol. 78, 585–594.PubMedCrossRefPubMedCentralGoogle Scholar
  55. Odden, J., Linnell, J., Andersen, R., 2006. Diet of Eurasian lynx, Lynx lynx, in the boreal forest of southeastern Norway: the relative importance of livestock and hares at low roe deer density. Eur. J. Wildl. Res. 52, 237–244.CrossRefGoogle Scholar
  56. Okarma, H., Jędrzejewski, W., Schmidt, It, Kowalczyk, R., Jędrzejewska, B., 1997. Predation of Eurasian lynx on roe deer and red deer in Białowieża Primeval Forest, Poland. Acta Theriol. 42, 203–224.CrossRefGoogle Scholar
  57. Panzacchi, M., Linnell, J.D.C., Serrao, G., Eie, S., Odden, M., Odden, J., Andersen, R., 2008. Evaluation of the importance of roe deer fawns in the spring-summer diet of red foxes in southeastern Norway. Ecol. Res. 23, 889–896.CrossRefGoogle Scholar
  58. Prevedello, J.A., Rodrigues, R.G., Monteiro-Filho, E.L.A., 2010. Habitat selection by two species of small mammals in the Atlantic Forest, Brazil: comparing results from live trapping and spool-and-line tracking. Mamm. Biol. 75, 106–114.CrossRefGoogle Scholar
  59. Putman, R.J., 1996. Ungulates in temperate forest ecosystems: perspectives and recommendations for future research. Forest Ecol. Manage. 88, 205–214.CrossRefGoogle Scholar
  60. Ratikainen, I.I., Panzacchi, M., Mysterud, A., Odden, J., Linnell, J., Andersen, R., 2007. Use of winter habitat by roe deer at a northern latitude where Eurasian lynx are present. J. Zool. (Lond.) 273, 192–199.CrossRefGoogle Scholar
  61. Rettie, W.J., Messier, F., 2000. Hierarchical habitat selection by woodland caribou: its relationship to limiting factors. Ecography 23, 466–478.CrossRefGoogle Scholar
  62. Rotenberry, J.T., Preston, K.L., Knick, S.T., 2006. GIS-based niche modelling for mapping species’ habitat. Ecology 87, 1458–1464.PubMedCrossRefPubMedCentralGoogle Scholar
  63. Rowland, M.M., Wisdom, M.J., Johnson, B.K., Kie, J.G., 2000. Elk distribution and modeling in relation to roads. J. Wildl. Manage. 64, 672–684.CrossRefGoogle Scholar
  64. Saïd, S., Servanty, S., 2005. The influence of landscape structure on female roe deer home-range size. Landscape Ecol. 20, 1003–1012.CrossRefGoogle Scholar
  65. Tellería, J.L., Virgós, E., 1997. Distribution of an increasing roe deer population in a fragmented Mediterranean landscape. Ecography 20, 247–252.CrossRefGoogle Scholar
  66. Theuerkauf, J., Rouys, S., 2008. Habitat selection by ungulates in relation to predation risk by wolves and humans in the Białowieza Forest, Poland. Forest Ecol. Manage. 256, 1325–1332.CrossRefGoogle Scholar
  67. Virgós, E., Telléria, J.L., 1998. Roe deer habitat selection in Spain: constraints on the distribution of a species. Can. J. Zool. 76, 1294–1299.CrossRefGoogle Scholar
  68. Vos, J., 2000. Food habits and livestock depredation of two Iberian wolf packs (Canis lupus signatus) in the north of Portugal. J. Zool. (Lond.) 251, 457–462.CrossRefGoogle Scholar
  69. Wiens, J.A., Stenseth, N.C., Horne, B.V., Ims, R.A., 1993. Ecological mechanisms and landscape ecol. Oikos 66, 369–380.CrossRefGoogle Scholar
  70. Wolff, J.O., Van Horn, T., 2003. Vigilance and foraging patterns of American elk during the rut in habitats with and without predators. Can. J. Zool. 81, 266–271.CrossRefGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2010

Authors and Affiliations

  • Rita Tinoco Torres
    • 1
    • 2
    Email author
  • João Santos
    • 1
  • John D. C. Linnell
    • 2
  • Emílio Virgós
    • 3
  • Carlos Fonseca
    • 1
  1. 1.CESAM & Department of BiologyUniversity of AveiroAveiroPortugal
  2. 2.Norwegian Institute for Nature ResearchTrondheimNorway
  3. 3.Biodiversity and Conservation AreaUniversity of Rey Juan CarlosMóstoles (Madrid)Spain

Personalised recommendations