Advertisement

Mammalian Biology

, Volume 76, Issue 4, pp 484–490 | Cite as

Genetically distinct population of Bengal tiger (Panthera tigris tigris) in Terai Arc Landscape (TAL) of India

  • Reeta SharmaEmail author
  • Heiko Stuckas
  • Ranjana Bhaskar
  • Imran Khan
  • Surendra Prakash Goyal
  • Ralph Tiedemann
Original Investigation

Abstract

We analyzed mtDNA polymorphisms (a total of 741 bp from a part of conserved control region, ND5, ND2, Cyt b and 12S) in 91 scats and 12 tissue samples of Bengal tiger (Panthera tigris tigris) populations across Terai Arc Landscape (TAL) located at the foothills of Himalayas in North Western India, Buxa Tiger Reserve (BTR), and North East India. In TAL and BTR, we found a specific haplotype at high frequency, which was absent elsewhere, indicating a genetically distinct population in these regions. Within the TAL region, there is some evidence for genetic isolation of the tiger populations west of river Ganges, i.e., in the western part of Rajaji National Park (RNP). Although the river itself might not constitute a significant barrier for tigers, recent human-induced changes in habitat and degradation of the Motichur-Chilla Corridor connecting the two sides of the tiger habitat of RNP might effectively prevent genetic exchange. A cohesive population is observed for the rest of the TAL. Even the more eastern BTR belongs genetically to this unit, despite the present lack of a migration corridor between BTR and TAL. In spite of a close geographic proximity, Chitwan (Nepal) constitutes a tiger population genetically different from TAL. Moreover, it is observed that the North East India tiger populations are genetically different from TAL and BTR, as well as from the other Bengal tiger populations in India.

Keywords

Bengal tiger Population genetics mtDNA haplotype Terai Arc 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bohonak, A.J., 2002. IBD (Isolation By Distance): a program for analyses of isolation by distance. J. Hered. 93, 153–154.CrossRefGoogle Scholar
  2. Clement, M., Posada, D., Crandall, K.A., 2000. TCS: a computer program to estimate gene genealogies. Mol. Ecol. 9, 1657–1659.CrossRefGoogle Scholar
  3. Crooks, K.R., Soule, M.E., 1999. Mesopredator release and avifaunal extinction in a fragmented system. Nature 400, 563–566.CrossRefGoogle Scholar
  4. Dinerstein, E., Wikramanayake, E., Robinson, J., Karanth, U., et al., 1997. A Framework for Identifying High Priority Areas and Actions for the Conservation of Tigers in the Wild. World Wildlife Fund (WWF), US and Wildlife Conservation Society, Washington, DC.Google Scholar
  5. Dunning, J.B., Borgella, R., Clements, K., Meffe, G.K., 1995. Patch isolation, corridor effects, and colonisation by a resident sparrow in a managed pine woodland. Conserv. Biol. 9, 542–550.CrossRefGoogle Scholar
  6. Excoffer, L., Laval, G., Schneider, S., 2005. ARLEQUIN ver 3.0: an integrated software package for population genetics data analysis. Evol Bioinformatics Online 1, 47–50.Google Scholar
  7. Gonzalez, A., Lawton, J.H., Gilbert, F.S., Blackburn, T.M., Evans-Freke, I., 1998. Metapopulation dynamics, abundance, and distribution in a microecosystem. Science 281, 2045–2047.CrossRefGoogle Scholar
  8. Haddad, N.M., 1999. Corridor use predicted from behaviours at habitat boundaries. Am. Nat. 153, 215–227.CrossRefGoogle Scholar
  9. Harihar, A., Pandav, B., Goyal, S.P., 2006. Monitoring tiger and its prey in Chilla Range, Rajaji National Park Uttaranchal, India. Report RR-06/001. Wildlife Institute of India, Dehradun.Google Scholar
  10. Harihar, A., Pandav, B., Goyal, S.P., 2009a. Responses of tiger (Panthera tigris) and their prey to removal of anthropogenic influences in Rajaji National Park. Indian Eur. J. Wildlife Res. 55, 97–105.CrossRefGoogle Scholar
  11. Harihar, A., Prasad, L.D., Chandan Ri, Pandav, B., 2009b. Losing grounds: tigers Panthera tigris in the north-western Shivalik landscape of India. Oryx 43 (1), 35–43.CrossRefGoogle Scholar
  12. Henry, P., Miquelle, D., Sugimoto, T., 2009. In situ population structure and ex situ representation of the endangered Amur tiger. Molecular Ecology 18 (15), 3121–3129.CrossRefGoogle Scholar
  13. Harihar, A., and Goyal, S. P., 2010. Population and habitat viability of tiger subpopulations in the north-western Terai arc Landscape. Final Report. WWF-International. Wildlife Institute of India, Dehradun. Pp iii+16.Google Scholar
  14. Jhala, Y.V., Gopal, R., Qureshi, Q. (Eds.), 2008. Status of the Tigers, Co-Predators, and Prey in India, Available: http://www.wii.gov.in/publications/statusof_tigers2008.pdf.
  15. Johnsingh, A.J.T., Negi, A.S., 2003. Status of tiger and leopard in Rajaji-Corbett conservation unit. Northern India Biol. Conserv. 111, 385–393.CrossRefGoogle Scholar
  16. Johnsingh, A.J.T., Ramesh, K., Qureshi, Q., David, A., Goyal, S.P., et al., 2004. Conservation status of tiger and associated species in the Terai Arc Landscape, India. RR-04/001, Wildlife Institute of India, Dehra Dun, India.Google Scholar
  17. Luo, S.J., Kim, J.H., Johnson, W.E., Van der Walt, J., Martenson, J., et al., 2004. Phylogeography and genetic ancestry of tigers (Panthera tigris). PLoS Biol. 2, 2275–2292.Google Scholar
  18. Mech, S.G., Hallett, J.G., 2001. Evaluating the effectiveness of corridors: a genetic approach. Conserv. Biol. 15, 467–474.CrossRefGoogle Scholar
  19. Mondol, S., Karanth, K., Ramakrishnan, U., 2009. Why the Indian subcontinent holds the key to global tiger recovery. PLoS Genet. 5 (8), 1000585, doi:  https://doi.org/10.1371/journal.pgen.CrossRefGoogle Scholar
  20. Noss, R.F., Quigley, H.B., Hornocker, M.G., Merrill, T., Paquet, P.C., 1996. Conservation biology and carnivore conservation in the Rocky Mountains. Conserv. Biol. 10, 949–963.CrossRefGoogle Scholar
  21. Rajapandian, K., 2009. Factors affecting habitat occupancy of tiger in the Terai Landscape, India, Ph.D. Thesis. Saurashtra University, Rajkot, India, p. 211.Google Scholar
  22. Sanderson, E., Forrest, J., Loucks, C., Ginsberg, J., Dinerstein, E., et al., 2006. Setting priorities for the conservation and recovery ofwild tigers: 2005–2015. Tech. Asses., Available: http://www.worldwildlife.org/species/finder/tigers/publications.html.
  23. Seidensticker, J., Dinerstein, E., Goyal, S.P., Gurung, B., Harihar, A., Johnsingh, A.J.T., et al., 2010. Tiger range collapse and recovery at the base of the Himalayas. In: David MacDondal, Loveridge, A.J. (Eds.), The Biology and Conservation of Wild Felids. Oxford Universiy Press, U.K.Google Scholar
  24. Sharma, R., Stuckas, H., Bhaskar, R., Rajput, S., et al., 2009. mtDNA indicates profound population structure in Indian tiger (Panthera tigris tigris). Conserv. Genet. 10, 909–914.CrossRefGoogle Scholar
  25. Smith, J.L.D., 1993. The role of dispersal in structuring the Chitwan tiger population. Behaviour 124, 165–195.CrossRefGoogle Scholar
  26. Smith, J.L.D., McDougal, C., 1991. The contribution of variance in lifetime reproduction to effective population size in tigers. Conserv. Biol. 5, 484–490.CrossRefGoogle Scholar
  27. Wilcox, B.A., Murphy, D.D., 1985. Conservation strategy effects of fragmentation on extinction. Am. Nat. 125, 879–887.CrossRefGoogle Scholar
  28. Weir, B.S., Cockerham, C.C., 1984. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370.Google Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2010

Authors and Affiliations

  • Reeta Sharma
    • 1
    • 3
    • 4
    Email author
  • Heiko Stuckas
    • 2
  • Ranjana Bhaskar
    • 3
  • Imran Khan
    • 3
  • Surendra Prakash Goyal
    • 3
  • Ralph Tiedemann
    • 4
  1. 1.Population and Conservation Genetics GroupInstituto Gulbenkian de CiênciaOeirasPortugal
  2. 2.Senckenberg Natural History Collection DresdenDresdenGermany
  3. 3.Wildlife Institute of IndiaDehradun, UttarakhandIndia
  4. 4.Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and BiologyUniversity of PotsdamPotsdamGermany

Personalised recommendations