Advertisement

Mammalian Biology

, Volume 76, Issue 2, pp 143–147 | Cite as

Space use by Río Negro tuco-tucos (Ctenomys rionegrensis): Excursions and spatial overlap

  • Bettina TassinoEmail author
  • Ignacio Estevan
  • Ramiro Pereira Garbero
  • Paula Altesor
  • Eileen A. Lacey
Original Investigation

Abstract

Patterns of spatial overlap can provide important insights into a species’ social organization. Subterranean rodents are notable for their lack of intermediate social systems in which individuals overlap spatially with one another but occupy distinct burrows. Previous studies of Río Negro tuco-tucos (Ctenomys rionegrensis) have revealed that while multiple adults can be captured at the same burrow entrance, these animals do not display other traits characteristic of social tuco-tucos, leading us to suspect that C. rionegrensis may exhibit an intermediate form of spatial and social structure. To test this hypothesis, we used radiotelemetry to monitor spatial relationships among adult C. rionegrensis during May, September, and November of 2005. Comparisons of minimum convex polygons for these animals revealed spatial overlap between 3 pairs of neighboring adult females. Most instances of spatial overlap occurred during November, which was the sampling period characterized by the largest number of radio fixes per animal and, accordingly, the largest individual home ranges. The observed examples of overlap appeared to reflect occasional excursions by one individual into the burrow system of another adult. These findings are consistent with an intermediate pattern of space use, suggesting that C. rionegrensis exhibits a spatial structure not previously documented among ctenomyids or other subterranean rodents.

Keywords

Tuco-tucos Ctenomys Space use Spatial overlap 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen, D.C., MacMahon, J.A., 1981. Population dynamics and bioenergetic of fossorial herbivore Thomomys talpoides (Rodentia: Geomyidae), in a spruce-fir sere. Ecol. Monogr. 51, 179–202.CrossRefGoogle Scholar
  2. Bowler, D.E., Benton, T.G., 2005. Causes and sonsequences of animal dispersal strategies: relating individual behaviour to spatial dynamics. Biol. Rev. 80, 205–225.CrossRefGoogle Scholar
  3. Cutrera, A.P., Lacey, E.A., Busch, C., 2005. Genetic structure in a solitary rodent (Ctenomys talarum): implications for kinship and dispersal. Mol. Ecol. 14, 2511–2523.CrossRefGoogle Scholar
  4. Cutrera, A.P., Antinuchi, C.D., Mora, M.S., Vasallo, A., 2006. Home-range and activity patterns of the South American subterranean rodent Ctenomys talarum. J. Mamm. 87, 1183–1191.CrossRefGoogle Scholar
  5. Dixon, K.R., Chapman, J.A., 1980. Harmonic mean measure of animal activity areas. Ecology 61, 1040–1044.CrossRefGoogle Scholar
  6. Gannon, W.L., Sikes, R.S., 2007. Gudelines of the American Sociey of Mammalogist for the use of wild mammals is research. J. Mamm. 88, 809–823.CrossRefGoogle Scholar
  7. Ims, R.A., 1987. Male spacing systems in microtine rodents. Am. Nat. 130, 475–484.CrossRefGoogle Scholar
  8. Jarvis, J.U., Bennett, N.C., 1990. The evolutionary history, population biology and social structure of African mole-rats: family Bathyergidae. Prog. Clin. Biol. Res. 335, 97–128.PubMedGoogle Scholar
  9. Lacey, E.A., 2001. Microsatellite variation in solitary and social tuco-tucos: molecular properties and population dynamics. Heredity 86, 628–637.CrossRefGoogle Scholar
  10. Lacey, E.A., 2000. Spatial and social systems of subterranean rodents. In: Lacey, E.A., Patton, J.L., Cameron, G.N. (Eds.), Life Underground: The Biology of Subterranean Rodents. University of Chicago Press, Chicago, USA, pp. 255–296.Google Scholar
  11. Lacey, E.A., Braude, S., Wieczorek, J., 1997. Burrow sharing by colonial tuco-tucos (Ctenomys sociabilis). J. Mamm. 78, 556–562.CrossRefGoogle Scholar
  12. Lacey, E.A., Braude, S., Wieczorek, J., 1998. Solitary burrow use by adult Patagonian tuco-tucos (Ctenomys haigi). J. Mamm. 79, 986–991.CrossRefGoogle Scholar
  13. Lacey, E.A., Ebensperger, L.A., 2007. Social structure in octodontid and ctenomyid rodents. In: Wolff, J.O., Sherman, P.W. (Eds.), Rodent Societies: An Ecological and Evolutionary Perspective. University of Chicago Press, Chicago, IL, USA, pp. 257–296.Google Scholar
  14. Lacey, E.A., Wieczorek, J.R., 2004. Kinship in colonial tuco-tucos: evidence from group composition and population structure. Behav. Ecol. 15, 988–996.CrossRefGoogle Scholar
  15. Lessa, E.P., Wlasiuk, G., Garza, J.C., 2005. Dymanics of genetic differentiation in the Rio Negro tuco-tucos (Ctenomys rionegrensis) at the local and geographical scales. In: Lacey, E., Myers, P. (Eds.), Mammalian Diversification. From chromosomes to phylogeography (A celebration of the career of James L. Patton), 133. University of California Publications in Zoology, Berkeley, California, pp. 155–174.Google Scholar
  16. Lidicker, W.Z., Patton, J.L., 1987. Patterns of dispersal and genetic structure in populations of small rodents. In: Chepko-Sade, B.D., Tang Halpin, Z. (Eds.), Mammalian Dispersal Patterns. The Effects of Social Structure on Population Genetics. University of Chicago Press, Chicago, pp. 144–161.Google Scholar
  17. Michener, G.R., 1983. Kin identification, matriarchies, and the evolution of sociality in ground-dwelling sciurids. In: Eisenberg, J.F., Kleiman, D.G. (Eds.), Advances in the Study of Mammalian Behavior. Special publication 7 of the American Society of Mammalogists. Allen Press, Lawrence, KS, pp. 528–572.Google Scholar
  18. Nevo, E., 1979. Adaptive convergence and divergence of subterranean mammals. Ann. Rev. Ecol. Syst. 10, 269–308.CrossRefGoogle Scholar
  19. Pearson, O.P., Christie, M.I., 1985. Los tuco-tucos (género Ctenomys) de los Parques Nacionales Lanin y Nahuel Huapi. Argentina. Hist. Nat. 5, 337–343.Google Scholar
  20. Rado, R., Bronchti, G., Wollberg, Z., Terkel, J., 1992. Sensitivity to light of the blind mole rat: behavioral and neuroanatomical study. Isr. J. Zool. 38, 323–331.Google Scholar
  21. Solomon, N.G., 2003. A reexamination of factors influencing philopatry in rodents. J. Mamm. 84, 1182–1197.CrossRefGoogle Scholar
  22. Swihart, R.K., Slade, N.A., 1997. On testing for independence of animal movements. J. Agric. Biol. Environ. Stat. 2, 48–63.CrossRefGoogle Scholar
  23. Tassino, B., 2006. Estructura poblacional y biología reproductiva del tucu-tucu de Río Negro (Ctenomys rionegrensis): relaciones entre el comportamiento y los procesos evolutivos. PhD Thesis Dissertation. Universidad de la República, Montevideo, Uruguay.Google Scholar
  24. Tassino, B., Passos, C., 2010. Reproductive biology of Rio Negro tuco-tuco Ctenomys rionegrensis (Rodentia: Octodontidae). Mamm. Biol. 75, 253–260.CrossRefGoogle Scholar
  25. Urrejola, D., Lacey, E., Wieczorek, J., Ebensperger, L., 2005. Daily activity patterns of free-living cururos (Spalacopus cyanus). J. Mamm. 86, 302–308.CrossRefGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2010

Authors and Affiliations

  • Bettina Tassino
    • 1
    Email author
  • Ignacio Estevan
    • 1
  • Ramiro Pereira Garbero
    • 1
  • Paula Altesor
    • 1
  • Eileen A. Lacey
    • 2
  1. 1.Sección Etología, Facultad de CienciasUniversidad de la RepúblicaMontevideoUruguay
  2. 2.Museum of Vertebrate Zoology and Department of Integrative BiologyUniversity of CaliforniaBerkeleyUSA

Personalised recommendations