Advertisement

Mammalian Biology

, Volume 76, Issue 1, pp 58–63 | Cite as

Movement distances of two species of sympatric rodents in linear habitats of Central Argentine agro-ecosystems

  • Daniela GomezEmail author
  • Lucía Sommaro
  • Andrea Steinmann
  • Marina Chiappero
  • Jose Priotto
Original Investigation

Abstract

Movement patterns of Akodon azarae and Calomys venustus in linear habitats were studied in relation to sex, season and abundance. Movement distances were measured by seasonal capture-mark-recapture samples from November 2005 to August 2007 in field borders in agro-ecosystems of Central Argentina. Movement distances in A. azarae varied by season and sex. During the breeding period, movement distances of males were longer than those of females, meanwhile in non-breeding period movement distances became similar between sexes. The main effect of sex on movement distances is consistent with the promiscuous / polygynous mating system suggested for A. azarae. Abundance and sex were the most important factor affecting movement distances in C. venustus, males moved larger distances than females and the higher the abundance, the shorter the movement distances of individuals . The results of this study may have implications in the management of non-crop linear habitats in agriculture landscapes since the maintenance of field borders would be important to support rodent populations that are important food sources for birds and mammals.

Keywords

Akodon azarae Calomys venustus Field borders Generalized linear mixed models Movement distances 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramsky, Z., Tracy, C.R., 1980. Relation between home-range size and regulation of population size in Microtus ochrogaster. Oikos 34, 347–355.Google Scholar
  2. Aars, J., Ims, R.A., Liu, H., Mulvey, M., Smith, M., 1998. Bank voles in linear habitats show restricted gene flow as revealed by mitochondrial DNA (mtDNA). Mol. Ecol. 7, 1383–1389.PubMedPubMedCentralGoogle Scholar
  3. Bilenca, D., Kravetz, F., 1998. Seasonal variations in microhabitat use and food habits of the pampas mouse, Akodon azarae, in agroecosystems of Central Argentina. Acta Theriol. 43, 195–203.CrossRefGoogle Scholar
  4. Bond, M.L., Wolff, J.O., 1999. Does access to females or competition among males limit male home-ranges in a promiscuous rodent? J. Mammal. 80, 1243–1250.CrossRefGoogle Scholar
  5. Bondrup-Nielsen, S., 1986. Investigation of spacing behaviour of Clethrionomys gapperi by experimentation. J. Anim. Ecol. 55, 269–279.CrossRefGoogle Scholar
  6. Burnham, K.P., Anderson, D.R., 2002. Model selection and inference, A Practical Information-theoretic Approach 2nd Edition Springer-Verlag, New York. USA.Google Scholar
  7. Busch, M., Kravetz, F.O., 1992. Competitive interactions among rodents (Akodon azarae, Calomys laucha, Calomys musculinus y Oligoryzomys flavescens) in a two-habitat system. I Spatial and numerical relationship. Mammalia 56, 45–56.Google Scholar
  8. Busch, M., Alvarez, M.R., Cittadino, E.A., Kravetz, F.O., 1997. Habitat selection and interespecific competition in rodents in pampean agroecosystems. Mammalia 61, 167–184.CrossRefGoogle Scholar
  9. Busch, M., Miño, M.H., Dadon, J.R., Hodara, K., 2000. Habitat selection by Calomys musculinus (Muridae, Sigmodontinae) in crop areas of the pampean region, Argentina. Ecol. Aus. 10, 15–26.Google Scholar
  10. Cabrera, A., 1953. Esquema fitogeográfico de la República Argentina. Rev. Museo de La Plata, Bot. 8, 87–168.Google Scholar
  11. Castellarini, F., Polop, J., 2002. Effects of extra food on population fluctuation patterns of the muroid rodents Calomys venustus. Austral Ecol. 27, 273–283.CrossRefGoogle Scholar
  12. Cittadino, E., Buscch, M., Kravetz, F., 1998. Population abundance and dispersal in Akodon azarae (pampean grassland mouse) in Argentina. Can. J. Zool. 76, 1011–1018.CrossRefGoogle Scholar
  13. Clarke, B.K., Clarke, B.S., Johnson, L.A., Haynie, M.T., 2001. Influence of roads on movement of small mammals. Southwestern Nat. 46, 338–344.CrossRefGoogle Scholar
  14. Ellis, A., Mills, J., Childs, J., Muzzini, M., McKee, K., Enria, D., Glass, G., 1997. Structure and floristics of habitats associated with five rodent species in an agroecosystems in Central Argentina. J. Zool. 243, 437–460.CrossRefGoogle Scholar
  15. Erlinge, S., Hoogenboom, I., Agrell, J., Nelson, J., Sandell, M., 1990. Density-related home-range size and overlap in adult field voles (Microtus agrestis) in southern Sweden. J. Mammal. 71, 597–603.CrossRefGoogle Scholar
  16. Fauske, J., Andreassen, P., Ims, R., 1997. Spatial organization in a small population of the root vole Microtus oeconomus in a linear habitat. Acta Theriol. 42, 79–90.CrossRefGoogle Scholar
  17. Fischer, J., Lindenmayer, D.B., 2007. Landscape modification and habitat fragmentation. A synthesis. Global Ecol. Biogeogr. 16, 265–280.CrossRefGoogle Scholar
  18. Forman, R.T., 1995. Land Mosaics. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
  19. Gaines, M.S., Johnson, M.L., 1982. Home range size and population dynamics in the prairie vole, Microtus ochrogaster. Oikos 39, 63–70.CrossRefGoogle Scholar
  20. Garland Jr, T., Bradley, W.G., 1984. Effects of a highway on Mojave Desert rodent populations. Am. Midl. Nat. 111, 47–56.CrossRefGoogle Scholar
  21. Getz, L., Oli, M., Hofman, J., McGuire, B., Ozgul, A., 2005. Factors influencing movement distances of two species of sympatric voles. J. Mammal. 84, 647–654.CrossRefGoogle Scholar
  22. Hayward, M., Hayward, G.J., Druce, D.J., Kerley, G.I.H., 2009. Do fences constrain predator movements on an evolutionary scale? Home range, food intake and movement patterns of large predators reintroduced to Addo Elephant National Park, South Africa. Biodiversity Conserv. 18, 887–904.CrossRefGoogle Scholar
  23. Hodara, K., Busch, M., Kittlein, M., Kravetz, F., 2000. Density-dependent habitat selection between maize cropfields and their borders in two rodent species (Akodon azarae and Calomys laucha) of Pampean agroecosystems. Evol. Ecol. 14, 571–593.CrossRefGoogle Scholar
  24. Hodara, K., Busch, M., 2006. Return to preferred habitats (edges) as a function of distance in Akodon azarae (Rodentia, Muridae) in cropfield-edge systems of central Argentina. J. Ethol. 24, 141–145.CrossRefGoogle Scholar
  25. Hubbs, A.H., Boonstra, R., 1998. Effects of food and predators on the home range size of arctic ground squirrels (Spermophilus parryii). Can. J. Zool. 76, 592–596.CrossRefGoogle Scholar
  26. Ims, R.A., 1987. Responses in spatial organization and behaviour to manipulations of the food resource in the vole Clethrionomys rufocanus. J. Anim. Ecol. 56, 585–596.CrossRefGoogle Scholar
  27. Kozakiewicz, M.A., 1993. Habitat isolation and ecological barriers — the effect on small mammal populations and communities. Acta Theriol. 38, 1–30.CrossRefGoogle Scholar
  28. Kozel, F.M., Fleharty, E.D., 1979. Movements of rodents across roads. Southwestern Nat. 24, 239–248.CrossRefGoogle Scholar
  29. Kravetz, F., Polop, J., 1983. Comunidades de Roedores em Agroecosistemas del Departamento de Rio Cuarto. Córdoba. Ecosur 10, 1–18.Google Scholar
  30. McShea, W.J., Madison, D.M., 1992. Presaturation and saturation dispersal 15 years later: some theoretical considerations. In: Stenseth, N.C.h, Lidicker Jr., W.Z. (Eds.), Animal Dispersal, Small Mammals as a Model. Chapman and Hall, London, pp. 319–329.Google Scholar
  31. Mader, H.J., 1984. Animal habitat isolation by roads and agricultural fields. Biol. Conserv. 29, 81–96.CrossRefGoogle Scholar
  32. Mangeaud, A., Videla, M., 2005. En busca de la independencia perdida: la utilización de Modelos Lineales Generalizados Mixtos en pruebas de preferencia. Ecol. Aus. 15, 199–206.Google Scholar
  33. Mills, J.M., Ellis, B.A., McKee, K.T., Maiztegui, J.I., Childs, J.E., 1992. Reproductive characteristics of rodent assemblages in cultivated areas of central Argentina. J. Mammal. 73, 470–479.Google Scholar
  34. Moorhouse, T.P., Macdonald, D.W., 2008. What limits male range size at different population densities? Evidence from three populations of water voles. J. Zool. 274, 395–402.CrossRefGoogle Scholar
  35. Ostfeld, R.S., 1985. Limiting resources and territoriality in microtine rodents. Am. Nat. 126, 1–15.CrossRefGoogle Scholar
  36. Ostfeld, R.S., 1990. The ecology of territoriality in small mammal. Trends Ecol. Evol. 5, 411–415.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Ostfeld, R.S., Canham, C.D., 1995. Density dependent processes in meadow voles; an experimental approach. Ecology 76, 521–532.CrossRefGoogle Scholar
  38. Oxley, D., Fenton, M., Carmody, G., 1974. The effects of roads on populations of small mammals. J. Appl. Ecol. 11, 51–59.CrossRefGoogle Scholar
  39. Polop, J., 1991. Distribución de cricetidos en las sierras de Achala (Provincia de Córdoba, República Argentina). Rev. UNRC 11, 115–121.Google Scholar
  40. Polop, J., Sabattini, M., 1993. Rodent abundance and distribution in habitats of agrocenosis in Argentina. Stud. Neotrop. Fauna E 28, 39–46.CrossRefGoogle Scholar
  41. Polop, J., Provensal, C., Dauría, P., 2005. Reproduction characteristics of free-living Calomys venustus (Rodentia, Muridae). Acta Theriol. 50, 357–366.CrossRefGoogle Scholar
  42. Priotto, J., Polop, J., 1997. Space and time use in syntopic populations of Akodon azarae and Calomys venustus (Rodentia, Muridae). Z. Säugetierkunde 62, 30–36.Google Scholar
  43. Priotto, J., Steinmann, A., 1999. Factors affecting home range size and overlap in Akodon azarae (Muridae: Sigmodontinae) in natural pasture of Argentina. Acta Theriol. 44, 37–44.CrossRefGoogle Scholar
  44. Priotto, J., Steinmann, A., Polop, J., 2002. Factor affecting home range size and overlap in Calomys venustus (Muridae: Sigmodontinae) in Argentine agroeco-systems. Mamm. Biol. 67, 97–104.CrossRefGoogle Scholar
  45. Pugh, S., Ostfeld, R., 1998. Effects of prior population density on use of space by meadow voles, Microtus pennsylvanicus. J. Mammal. 79, 551–557.CrossRefGoogle Scholar
  46. Pusenius, J., Viitala, J., 1995. Familiarity of breeding field vole (Microtus agrestis) females does not affect their space use and demography of the population. Ann. Zool. Fenn. 32, 217–223.Google Scholar
  47. Richardson, J.H., Shore, R.F., Treweek, J.R., 1997. Are major roads a barrier to small mammals? J. Zool. Lond. 243, 840–846.CrossRefGoogle Scholar
  48. Ricklefs, R.E., 2008. Desintegration of the ecological community. Am. Nat. 172, 741–750.PubMedCrossRefPubMedCentralGoogle Scholar
  49. Rytwinski, T., Fahrig, L., 2007. Effect of road density on abundance of white-footed mice. Landscape Ecol. 22, 1501–1512.CrossRefGoogle Scholar
  50. Schoener, T.W., 1983. Simple models of optimal territory size: a reconciliation. Am. Nat. 121, 608–629.CrossRefGoogle Scholar
  51. Simonetti, J., 1989. Microhábitat use by small mammals in central Chile. Oikos 56, 309–318.CrossRefGoogle Scholar
  52. Slade, N., Russell, L., 1998. Distances as indices to movements and home range size from trapping records of small mammals. J. Mammal. 79, 346–351.CrossRefGoogle Scholar
  53. Sommaro, L., Gomez, D., Bonatto, F., Steinmann, A., Chiappero, M., Priotto, J. Corn mice (Calomys musculinus) movement in linear habitats of agricultural ecosystems. J. Mammal., in press.Google Scholar
  54. Steinmann, A., 2006. Comportamiento de espaciamiento de Calomys musculinus (Rodentia: Muridae). Ph.D. Thesis, Universidad Nacional de Río Cuarto.Google Scholar
  55. Steinmann, A.R., Priotto, J.W., Castillo, E.A., Polop, J., 2005. Size and overlap of home range in Calomys musculinus (Muridae: Sigmodontinae). Acta Theriol. 50, 197–206.CrossRefGoogle Scholar
  56. Steinmann, A.R., Priotto, J.W., Polop, J., 2009. Territorial behaviour in corn mice, Calomys musculinus (Muridae: Sigmodontinae), with regard to mating system. J. Ethol. 27, 51–58.CrossRefGoogle Scholar
  57. Swihart, R.K., Slade, N.S., 1984. Road crossing in Sigmodon hispidus and Microtus ochrogaster. J. Mammal. 65, 357–360.CrossRefGoogle Scholar
  58. Tufto, J., Andersen, R., Linnell, J., 1996. Habitat use and ecological correlates of home range size in small cervid: the roe deer. J. Anim. Ecol. 65, 715–724.CrossRefGoogle Scholar
  59. Wolff, J.O., 1993. Why are female small mammals territorial? Oikos 68, 364–370.CrossRefGoogle Scholar
  60. Wolff, J.O., Edge, W.D., Bentley, R., 1994. Reproductive and Behavioural biology of the gray-tailed vole. J. Mammal. 75, 873–879.CrossRefGoogle Scholar
  61. Wolff, J.O., Schauber, E.M., 1996. Space use and juvenile recruitment in gray-tailed voles in response to intruder pressure and food abundance. Acta Theriol. 41, 35–43.CrossRefGoogle Scholar
  62. Yletyinem, S., Norrdahl, K., 2008. Habitat use of field voles (Microtus agrestis) in wide and narrow buffer zones. Agric. Ecosyst. Environ. 123, 194–200.CrossRefGoogle Scholar
  63. Zuletta, G., Kravetz, F., Busch, M., Percich, R., 1988. Dinámica poblacional del ratón del pastizal pampeano (Akodon azarae) en ecosistemas agrarios de Argentina. Rev. Chi. Hist. Nat. 61, 231–244.Google Scholar
  64. Zuleta, G., Bilenca, D., 1992. Seasonal shifts within juvenile recruit sex ratio of Pampas mice (Akodon azarae). J. Zool. 227, 397–404.CrossRefGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2010

Authors and Affiliations

  • Daniela Gomez
    • 1
    • 2
    Email author
  • Lucía Sommaro
    • 1
    • 2
  • Andrea Steinmann
    • 1
    • 2
  • Marina Chiappero
    • 1
    • 3
  • Jose Priotto
    • 1
    • 2
  1. 1.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Ciudad Autónoma de Buenos AiresCórdobaArgentina
  2. 2.Departamento de Ciencias NaturalesUniversidad Nacional de Río CuartoCórdobaArgentina
  3. 3.Cátedra de Genética de Poblaciones y EvoluciónFCEyN Universidad Nacional de CórdobaArgentina

Personalised recommendations