Mammalian Biology

, Volume 75, Issue 6, pp 547–554 | Cite as

A quantitative approach to the cranial ontogeny of the puma

  • Norberto P. GianniniEmail author
  • Valentina Segura
  • María Isabel Giannini
  • David Flores
Original Investigation


The cranial ontogeny of specialized mammals is relevant to the understanding of the connection of form and function in a developmental, ecological, and evolutionary context. As highly specialized carnivores, felids are of especial interest. We studied the postnatal ontogeny of the skull in Puma concolor (Mammalia: Carnivora: Felidae) using a quantitative approach. We interpreted our results in the light of a previous qualitative assessment of ontogenetic changes in the species. This represents one of the few integrative studies of skull development in any extant species of wild felids. We report patterns of multivariate allometry of 19 linear skull dimensions measured in 48 Argentine specimens. We examined the (jackknife resampled) departures from isometry as well as the interplay of isometric and allometric trends in shaping the puma skull. Both the qualitative and quantitative results indicate that the major ontogenetic changes are directly linked to cranial structures that support a developing masticatory apparatus and its associated jaw and neck musculature, which are essential for the action of canines and carnassials during the killing bite and slicing flesh. Sexual differences suggest allometric scaling (hypo- or hyper-morphosis) as key processes in the development of the puma skull.


Felidae Skull ontogeny Allometry Hypermorphosis Hypomorphosis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdala, F., Flores, D.A., Giannini, N.P., 2001. Post-weaning ontogeny in the skull in Didelphis albiventris. Journal of Mammalogy 82, 190–200.CrossRefGoogle Scholar
  2. Antón, M., Salesa, M.J., Pastor, J.F., Sánchez, I.M., Fraile, S., Morales, J., 2004. Implications of the mastoid anatomy of larger extant felids for the evolution and predatory behaviour of Sabretoothed cats (Mammalia, Carnivora, Felidae). Zoological Journal of the Linnean Society 140, 207–221.CrossRefGoogle Scholar
  3. Biknevicius, A.R., Leigh, S.R., 1997. Patterns of growth of the mandibular corpus in spotted hyenas (Crocuta crocuta) and cougars (Puma concolor). Zoological Journal of the Linnean Society 120, 139–161.CrossRefGoogle Scholar
  4. Biknevicius, A.R., van Valkenburgh, B., 1996. Design for killing: craniodental adaptations of predators. In: Gittleman, J.L. (Ed.), Carnivore Behavior, Ecology, and Evolution. Cornell University Press, New York, pp. 393–428.Google Scholar
  5. Biknevicius, A.R., van Valkenburgh, B., Walker, J., 1996. Incisor size and shape: implications for feeding behaviors in saber-toothed ‘cats’. Journal of Vertebrate Paleontology 16, 510–521.CrossRefGoogle Scholar
  6. Biknevicius, A.R., 1996. Functional discrimination in the masticatory apparatus of juvenile and adult cougars (Puma concolor) and spotted hyenas (Crocuta crocuta). Canadian Journal of Zoology 74, 1934–1942.CrossRefGoogle Scholar
  7. Binder, W.J., van Valkenburgh, B., 2000. Development of bite strength and feeding behavior in juvenile spotted hyenas (Crocuta crocuta). Journal of Zoology 252, 273–283.CrossRefGoogle Scholar
  8. Broom, R., 1949. Notes on the milk dentition of the lion, leopard and cheetah. Annals of the Transvaal Museum 21, 183–185.Google Scholar
  9. Bryant, H.N., 1988. Delayed eruption of the deciduous upper canine in the sabretoothed carnivore Barbourofelis lovei (Carnivora, Nimravidae). Journal of Vertebrate Paleontology 8, 295–306.CrossRefGoogle Scholar
  10. Bryant, H.N., 1990. Implications of the dental eruption sequence in Barbourofelis (Carnivora, Nimravidae) for the function of upper canines and the duration of parental care in sabertoothed carnivores. Journal of Zoology 222, 585–590.CrossRefGoogle Scholar
  11. Caro, T.M., 1994. Cheetahs of the Serengeti Plains: Group Living in an Asocial Species. University of Chicago Press, Chicago.Google Scholar
  12. Christiansen, P., 2008. Evolution of Skull and Mandible Shape in Cats (Carnivora: Felidae). PloS One 3 (7), e2807.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Christiansen, P., Adolfssen, J.S., 2005. Bite forces, canine strength and skull allometry in carnivores (Mammalia, Carnivora). Journal of Zoology 266, 133–151.CrossRefGoogle Scholar
  14. Christiansen, P., Harris, J.M., 2005. Body size of Smilodon (Mammalia: Felidae). Journal of Morphology 266, 369–384.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Collier, G.E., O’Brien, S.J., 1985. A molecular phylogeny of the Felidae: immunological distance. Evolution 39, 473–487.PubMedCrossRefGoogle Scholar
  16. Crowe, D.M., 1975. Aspects of ageing, growth, and reproduction of bobcats from Wyoming. Journal of Mammalogy 56, 177–198.PubMedCrossRefGoogle Scholar
  17. Currier, M.J.P., 1979. An age estimation technique and some normal blood values for mountain lions (Felis concolor). Colorado State University, Unpublished Ph.D. Dissertation.Google Scholar
  18. Currier, M.J.P., 1983. Felis concolor. Mammalian species 200, 1–7.CrossRefGoogle Scholar
  19. Duckler, G.L., 1998. An unusual osteological formation in the posterior skulls of captive tigers (Panthera tigris). Zoo Biology 17, 135–142.CrossRefGoogle Scholar
  20. Eaton, R.L., Verlander, K.A., 1977. Reproduction in the puma: biology, behavior and ontogeny. In: Eaton, R.L. (Ed.), The World’s Cats. Carnivore Research Institute, Burke Museum, University of Washington, Seattle, pp. 45–70.Google Scholar
  21. Emerson, S.B., Bramble, D.M., 1993. Scaling, allometry and skull design. In: Hanken, J., Hall, B.K. (Eds.), The Skull. The University of Chicago Press, Chicago, pp. 384–416.Google Scholar
  22. Emerson, S.B., Hastings, P.A., 1998. Morphological correlations in evolution: consequences for phylogenetic analysis. Quarterly Review of Biology 73, 141–162.CrossRefGoogle Scholar
  23. Emerson, S.B., Radinsky, L., 1980. Functional analysis of sabertooth cranial morphology. Paleobiology 6, 295–312.CrossRefGoogle Scholar
  24. Evans, H.E., 1993. Miller’s Anatomy of the Dog. W.B. Saunders Company, Philadelphia.Google Scholar
  25. Ewer, R., 1973. The Carnivores. Cornell University Press, Ithaca.Google Scholar
  26. Fagen, R.M., Wiley, K.S., 1978. Felid paedomorphosis, with special reference to Leopardus. Carnivore 1, 72–81.Google Scholar
  27. Fink, W.L., 1982. The conceptual relationship between ontogeny and phylogeny. Paleobiology 8, 254–264.CrossRefGoogle Scholar
  28. Flores, D.A., Giannini, N.P., Abdala, F., 2003. Cranial ontogeny on Lutreolina crassicaudata (Didelphidae): a comparison with Didelphis albiventris. Acta Theriologica 48, 1–9.CrossRefGoogle Scholar
  29. Flores, D.A., Giannini, N.P., Abdala, F., 2006. Comparative postnatal ontogeny of the skull in an Australidelphian Metatherian, Dasyurus albopunctatus (Marsupialia: Dasyuromorpha: Dasyuridae). Journal of Morphology 267, 426–440.PubMedCrossRefPubMedCentralGoogle Scholar
  30. García-Perea, R., 1996. Patterns of postnatal development in skulls of Lynxes, Genus Lynx (Mammalia: Carnivora). Journal of Morphology 229, 241–254.PubMedCrossRefPubMedCentralGoogle Scholar
  31. García-Perea, R., 2002. Andean mountain cat, Oreailurus jacobita: morphological description and comparison with other felines from the altiplano. Journal of Mammalogy 83, 110–124.CrossRefGoogle Scholar
  32. Gay, S.W., Best, T.L., 1996. Age-related variation in skulls of the puma (Puma concolor). Journal of Mammalogy 77, 191–198.CrossRefGoogle Scholar
  33. Giannini, N.P., Abdala, F., Flores, D.A., 2004. Comparative postnatal ontogeny of the skull in Dromiciops gliroides (Marsupialia: Microbiotheriidae). American Museum Novitates 3460, 1–17.CrossRefGoogle Scholar
  34. Gilbert, S.G., 1997. Pictorial Anatomy of the Cat. University of Washington Press, Seattle.Google Scholar
  35. Goswami, A., 2006. Morphological integration in the carnivoran skull. Evolution 60, 169–183.PubMedCrossRefPubMedCentralGoogle Scholar
  36. Hollister, N., 1917. Some effects of environment and habit on captive lions. Proceedings of the United States National Museum 53, 177–193.CrossRefGoogle Scholar
  37. Jackson, D.L., Gluesing, E.A., Jacobson, H.A., 1988. Dental eruption in bobcats. Journal of Wildlife Management 52, 515–517.CrossRefGoogle Scholar
  38. Johnson, W.E., O’Brien, S.J., 1997. Phylogenetic reconstruction of the Felidae using 16S rRNA and NADH-5 mitochondrial genes. Journal of Molecular Evolution 44, 98–116.CrossRefGoogle Scholar
  39. Johnson, N.F., Brown, B.A., Bosomworth, J.C., 1981. Age and sex characteristics of bobcat canines and their use in population assessment. Wildlife Society Bulletin 9, 202–206.Google Scholar
  40. Jolicoeur, P., 1963a. The multivariate generalization of the allometry equation. Biometrics 19, 497–499.CrossRefGoogle Scholar
  41. Jolicoeur, P., 1963b. The degree of generality of robustness in Martes americana. Growth 27, 1–27.Google Scholar
  42. Kelson, K.R., 1946. Notes on the comparative osteology of the bobcat and house cat. Journal of Mammalogy 27, 255–264.PubMedCrossRefGoogle Scholar
  43. Kitchener, A., 1991. The Natural History of the Wild Cats. Cornell University Press, Ithaca.Google Scholar
  44. Laundré, J.W., Hernández, L., Streubel, D., Altendorf, K., González, C.L., 2000. Aging mountain lions using gum-line recession. Wildlife Society Bulletin 28, 963–966.Google Scholar
  45. Manly, B.F.J., 1997. Randomization, Bootstrap, and Monte Carlo Methods in Biology. Chapman & Hall, London.Google Scholar
  46. Marroig, G., Cheverud, J.M., 2004. Cranial evolution in sakis (Pithecia, Platyrrhini) I: interspecific differentiation and allometric patterns. American Journal of Physical Anthropology 125, 266–278.PubMedCrossRefGoogle Scholar
  47. Martin, L.D., 1980. Functional morphology and the evolution of cats. Transactions of the Nebraska Academy of Science 8, 141–154.Google Scholar
  48. Mattern, M.Y., McLennan, D.A., 2000. Phylogeny and speciation of felids. Cladistics 16, 232–253.CrossRefGoogle Scholar
  49. Mazák, J.H., Groves, C.P., 2006. A taxonomic revision of the tigers (Panthera tigris) of Southeast Asia. Mammalian Biology 71, 268–287.CrossRefGoogle Scholar
  50. Myers, P., 2000. Carnivora (on-line). Animal Diversity Web. Available at <>.
  51. Nowak, R.M., 1999. Walker’s Mammals of the World. Johns Hopkins University Press, Baltimore.Google Scholar
  52. O’Reagan, H.J., Kitchener, A.C., 2005. The effects of captivity on the morphology of captive, domesticated and feral mammals. Mammal Review 35, 215–230.CrossRefGoogle Scholar
  53. O’Regan, H.J., 2001. Morphological effects of captivity in big cat skulls. In: Wehnelt, S., Hudson, C. (Eds.), Proceedings of the 3rd Zoo Research Symposium. Chester Zoo, Chester, pp. 18–22.Google Scholar
  54. Olson, E.C., Miller, R.L., 1958. Morphological Integration. University of Chicago Press, Chicago.Google Scholar
  55. Peigné, S., de Bonis, L., 2003. Juvenile cranial anatomy of Nimravidae (Mammalia, Carnivora): biological and phylogenetic implications. Zoological Journal of the Linnean Society 138, 477–493.CrossRefGoogle Scholar
  56. Petersen, M.K., Petersen, M.K., 1978. Growth rate and other postnatal developmental changes in margays. Carnivore 1, 87–92.Google Scholar
  57. Quenouille, M.H., 1956. Notes on bias in estimation. Biometrika 43, 353–360.CrossRefGoogle Scholar
  58. R Development Core Team, 2004. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. <>.
  59. Reilly, S.M., Wiley, E.O., Meinhardt, D.J., 1997. An integrative approach to heterochrony: the distinction between interspecific and intraspecific phenomena. Biological Journal of the Linnean Society 60, 119–143.CrossRefGoogle Scholar
  60. Richmond, F.J.R., Thomson, D.B., Loeb, G.E., 1992. Electromyographic studies of neck muscles in the intact cat. Experimental Brain Research 88, 41–58.PubMedCrossRefPubMedCentralGoogle Scholar
  61. Salles, L.O., 1992. Felid phylogenetics: extant taxa and skull morphology (Felidae, Aeluroidea). American Museum Novitates 3047, 1–67.Google Scholar
  62. Segura, V., Flores, D.A., 2009. Aproximación cualitativa y aspectos funcionales en la ontogenia craneana de Puma concolor (Felidae). Mastozoologí Neotropical 16, 169–182.Google Scholar
  63. Shaw, H.G., Beier, P., Culver, M., Grigione, M., 2007. Puma Field Guide. The Cougar Network.Google Scholar
  64. Slater, G.J., van Valkenburgh, B., 2008. Long in the tooth: evolution of sabertooth cat cranial shape. Paleobiology 34 (3), 403–419.CrossRefGoogle Scholar
  65. Slaughter, B.H., Pine, R.H., Pine, N.E., 1974. Eruption of cheek teeth in Insectivora and Carnivora. Journal of Mammalogy 55, 115–125.PubMedCrossRefPubMedCentralGoogle Scholar
  66. Stander, P.E., 1997. Field age determination of leopards by tooth wear. African Journal of Ecology 35, 156–161.CrossRefGoogle Scholar
  67. Stehlik, J., 1971. Breeding jaguars Panthera onca at Ostrava Zoo. International Zoo Yearbook 11, 116–118.CrossRefGoogle Scholar
  68. Stuart, C.H.T., Stuart, T.D., 1985. Age determination and development of foetal and juvenile Felis caracal Schreber, 1776. Säugertierkunde Mitteilungen 32, 217–229.Google Scholar
  69. Tukey, J.W., 1956. Bias and confidence in not quite large samples. Annals of Mathematics and Statistic 23, 614.Google Scholar
  70. van Valkenburgh, B., 1990. Skeletal and dental predictors of body mass in carnivores. In: Damuth, J., Macfadden, B.J. (Eds.), Body Size in Mammalian Paleobiology: Estimation and Biological Implications. Cambridge University Press, Cambridge, pp. 181–205.Google Scholar
  71. Vermeij, G.J., 1973. Adaptation, versatility, and evolution. Systematic Zoology 22, 466–477.CrossRefGoogle Scholar
  72. Volf, J., 1972. Exigences alimentaires et dentition des jeunes de trois especes de felides. Mammalia 36, 683–686.CrossRefGoogle Scholar
  73. Wagner, G.P., 1996. Homologues, natural kinds and the evolution of modularity. American Zoologist 36, 36–43.CrossRefGoogle Scholar
  74. Wickland, C.R., Baker, J.F., Paterson, B.W., 1991. Torque vectors of neck muscles in the cat. Experimental Brain Research 84, 649–659.PubMedCrossRefGoogle Scholar
  75. Ximénez, A., 1974. Notas sobre Félidos Neotropicales, VI. Contributión a la elucidatión de las variaciones individuales de Felis pardalis Linne, 1758 (Mammalia, Felidae). Comunicaciones del Museo Argentino de Ciencias Naturales “Bernardino Rivadavia” e Instituto Nacional de Investigación de las Ciencias Naturales 4, 41–55.Google Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2009

Authors and Affiliations

  • Norberto P. Giannini
    • 1
    • 2
    • 3
    Email author
  • Valentina Segura
    • 2
    • 4
  • María Isabel Giannini
    • 5
  • David Flores
    • 2
    • 4
  1. 1.Division of Vertebrate Zoology (Mammalogy)American Museum of Natural HistoryUSA
  2. 2.Consejo Nacional de Investigaciones Científicas y TécnicasArgentina
  3. 3.Programa de Investigaciones de Biodiversidad Argentina, Facultad de Ciencias Naturales e IMLUniversidad nacional de TucumánArgentina
  4. 4.Museo Argentino de Ciencias Naturales Bernardino RivadaviaBuenos AiresArgentina
  5. 5.Departamento de Matemática, Facultad de Ciencias Exactas y TecnologíaUniversidad Nacional de TucumánArgentina

Personalised recommendations