Mammalian Biology

, Volume 75, Issue 2, pp 160–174 | Cite as

Genetic diversity and integrity of German wildcat (Felis silvestris) populations as revealed by microsatellites, allozymes, and mitochondrial DNA sequences

  • Iris Eckert
  • Franz Suchentrunk
  • Georgi Markov
  • Günther B. HartlEmail author
Original Investigation


As a consequence of persecution and habitat fragmentation, wildcats (Felis silvestris silvestris) in Western Europe have experienced a severe reduction in population numbers and sizes. The remaining wildcat populations are considered to be endangered by losses of genetic variability and by hybridisation with free-ranging domestic cats. To investigate genetic diversity within and among wild and domestic cat populations in Germany and to estimate the extent of gene flow between both forms, we analysed a total of 266 individuals. PCR-amplification and sequencing of 322 base pairs of a highly variable part of the mitochondrial control region (HV1) of 244 specimens resulted in 41 haplotypes with 31 polymorphic sites. Additionally, eight microsatellite loci were examined for those 244 cats. Moreover, a total of 46 wildcats and 22 domestic cats could be genotyped for 13 polymorphic out of 31 enzyme loci. Genetic variability in both groups was generally high. Variability in domestic cat populations was higher than in wildcat populations. Almost no differentiation between domestic cat populations could be found (FST for microsatellites=3%). In contrast, wildcat populations differed significantly from one another (FST for microsatellites=9.55%) Within the smaller wildcat populations, a reduction of genetic diversity was detectable with regard to the nuclear DNA. Wildcat and domestic cat mitochondrial haplotypes were separated, suggesting a very low level of maternal gene flow between both forms. In microsatellites and to a somewhat lesser extent in allozymes, wildcats and domestic cats showed distinct differentiation, suggesting an only low extent of past hybridisation in certain populations. The microsatellite data set indicated a significantly reduced effective population size (bottleneck) in the recent past for one German wildcat population.


Felis silvestris Domestic cat Hybridisation Microsatellites mtDNA 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bandelt, H.-J., Forster, P., Rohl, A., 1999. Median joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48.PubMedPubMedCentralGoogle Scholar
  2. Beaumont, M., Barrat, E.M., Gottelli, D., Kitchener, A.C., Daniels, M.J., Pritchards, J.K., Bruford, M.W., 2001. Genetic diversity and introgression in the Scottish wildcat. Mol. Ecol. 10, 319–336.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Belkhir, K., 2004. GENETIX V. 4.0, logiciel sous WindowsTM pour la génétique des populations. Laboratoire Génome, Populations, Interactions CNRS UMR 5000, Université de Montpellier II, Montpellier, France.Google Scholar
  4. Clutton-Brock, J., 1981. Domesticated Animals from Early Times. British Museum (Natural History), London.Google Scholar
  5. Cornuet, J.M., Luikart, G., 1996. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144, 2001–2014.PubMedPubMedCentralGoogle Scholar
  6. Cornuet, J.M., Piry, S., Luikart, G., Estoup, A., Solignac, M., 1999. New methods employing multilocus genotypes to select or exclude populations as origins of individuals. Genetics 153, 1989–2000.PubMedPubMedCentralGoogle Scholar
  7. Di Rienzo, A., Peterson, A.C., Garza, J.C., Valdes, A.M., Slatkin, M., Freimer, N.B., 1994. Mutational processes of simple-sequence repeat loci in human populations. Proc. Natl. Acad. Sci. 91, 3166–3170.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Driscoll, C.A., Menotti-Raymond, M., Roca, A.L., Hupe, K., Johnson, W.E., Geffen, E., Harley, E.H., Delibes, M., Pontier, D., Kitchener, A.C., Yamaguchi, N., O’Brien, S.J., Macdonald, D.W., 2007. The near eastern origin of cat domestication. Science 317, 519–523.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Evanno, G., Regnaut, S., Goudet, J., 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611–2620.CrossRefGoogle Scholar
  10. Excoiffier, L., Smouse, P.E., Quattro, J.M., 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479–491.Google Scholar
  11. Falush, D., Stephens, M., Pritchard, J.K., 2003. Inference of population structure: extensions to linked loci and correlated allele frequencies. Genetics 164, 1567–1587.PubMedPubMedCentralGoogle Scholar
  12. Felsenstein, J., 1993. PHYLIP: Phylogeny Inference Package. Department of Genetics, University of Washington, Seattle.Google Scholar
  13. Germain, E., Benhamou, S., Poulle, M.-L., 2008. Spatiotemporal sharing between the European wildcat, the domestic cat and their hybrids. J. Zool. London 276, 195–203.CrossRefGoogle Scholar
  14. Goudet, J., 1999. PCA-GEN for windows V. 1.2 (Institute of Ecology, University of Lausanne, Lausanne). <>.Google Scholar
  15. Goudet, J., 2001. FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). <>.
  16. Grillitsch, M., Hartl, G.B., Suchentrunk, F., Willing, R., 1992. Allozyme evolution and the molecular clock in Lagomorpha. Acta Theriol. 37, 1–13.CrossRefGoogle Scholar
  17. Harris, H., Hopkinson, D.A., 1976. Handbook of Enzyme Electrophoresis in Human Genetics. North-Holland Publ. Co., Amsterdam.Google Scholar
  18. Hartl, G.B., Höger, H., 1986. Biochemical variation in purebred and crossbred strains of domestic rabbit Oryctolagus cuniculus L. Genet. Res. (Cambridge) 48, 27–34.CrossRefGoogle Scholar
  19. Hartl, G.B., Pucek, Z., 1994. Genetic depletion in the European bison (Bison bonasus) and the significance of electrophoretic heterozygosity for conservation. Conserv. Biol. 8, 167–174.CrossRefGoogle Scholar
  20. Herre, W., Röhrs, M., 1990. Haustiere — zoologisch gesehen. Gustav Fischer, Stuttgart, New York.CrossRefGoogle Scholar
  21. Hille, A., Pelz, O., Trinzen, M., Meinig, H., Schlegel, M., Peters, G., 2000. Using microsatellite-DNA markers for individualization of wildcats and domestic cats. Bonn. Zool. Beitr. 49, 165–176.Google Scholar
  22. Hubbard, A.L., McOrist, S., Jones, T.W., Boid, R., Scott, R., Easterbee, N., 1992. Is survival of European wildcats Felis silvestris in Britain threatened by interbreeding with domestic cats. Biol. Conserv. 61, 203–208.CrossRefGoogle Scholar
  23. Johansson, F., Hüster, H., 1987. Untersuchungen an Skelettresten von Katzen aus Haithabu (Ausgrabung 1966-169). Berichte über die Ausgrabungen in Haithabu. Bericht 24. Neumüns-ter, Wachholtz.Google Scholar
  24. Klar, N., Fernández, N., Kramer-Schadt, S., Herrmann, M., Trinzen, M., Büttner, I., Niemitz, C., 2008. Habitat selection models for European wildcat conservation. Biol. Conserv. 141, 308–319.CrossRefGoogle Scholar
  25. Kocher, T.D., Thomas, W.K., Meyer, A., Edwards, S.V., Pääbo, S., Villablanca, F.X., Wilson, A.C., 1989. Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc. Natl. Acad. Sci. USA 86, 6196–6200.PubMedCrossRefPubMedCentralGoogle Scholar
  26. Lecis, R., Pierpaoli, M., Birò, Z.S., Szemethy, L., Ragni, B., Vercillo, F., Randi, E., 2006. Bayesian analyses of admixture in wild and domestic cats (Felis silvestris) using linked microsatellite loci. Mol. Ecol. 15, 119–131.PubMedCrossRefPubMedCentralGoogle Scholar
  27. Lopez, J.V., Cevario, S., O’Brien, S.J., 1996. Complete nucleotide sequences of the domestic cat (Felis catus) mitochondrial genome and a transposed mtDNA tandem repeat (Numt) in the nuclear genome. Genomics 33, 229–246.PubMedCrossRefPubMedCentralGoogle Scholar
  28. Menotti-Raymond, M.A., O’Brien, S.J., 1995. Evolutionary conservation of ten microsatellite loci in four species of Felidae. J. Hered. 86, 319–321.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Nei, M., 1972. Genetic distance between populations. Am. Nat. 106, 283–292.CrossRefGoogle Scholar
  30. Nei, M., 1987. Molecular Evolutionary Genetics. Columbia University Press, New York.Google Scholar
  31. Nozawa, K., Fukui, M., Furukawa, T., 1985. Blood-protein polymorphism in the Japanese cats. Jpn. J. Genet. 60, 425–439.CrossRefGoogle Scholar
  32. O’Brien, J., Devillard, S., Say, L., Vanthomme, H., Léger, F., Ruette, S., Pontier, D., 2009. Preserving genetic integrity in a hybridising world: are European Wildcats (Felis silvestris silvestris) in Eastern Francedistinct from sympatric feral domestic cats? Biodivers. Conserv. (published online).Google Scholar
  33. Oliveira, R., Godinho, R., Randi, E., Ferrand, N., Alves, P.C., 2008a. Molecular analysis of hybridization between wild and domestic cats (Felis silvestris) in Portugal: implications for conservation. Conserv. Genet. 9, 1–11.CrossRefGoogle Scholar
  34. Oliveira, R., Godinho, R., Randi, E., Alves, P.C., 2008b. Hybridization versus conservation: are domestic cats threatening the genetic integrity of wildcats (Felis silvestris silvestris) in Iberian Peninsula. Philos. Trans. R. Soc. B 363, 2953–2961.CrossRefGoogle Scholar
  35. Paetkau, D., Slade, R., Burden, M., Estoup, A., 2004. Direct, real-time estimation of migration rate using assignment methods: a simulation-based exploration of accuracy and power. Mol. Ecol. 13, 55–65.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Parent, G.H., 1974. Plaidoyer pour le chat sylvestre ou dix excellentes raisons pour protéger et animal méconnu en Belgique et ailleurs. L Homme et la Nature 10, 1–15.Google Scholar
  37. Piechocki, R., 1990. Die Wildkatze-Felis silvestris. Neue Brehm Bücherei. A. Ziemsen Verlag-Wittenberg, Lutherstadt.Google Scholar
  38. Pierpaoli, M., Birò, Z.S., Herrmann, M., Hupe, K., Fernandes, M., Ragni, B., Szemethy, L., Randi, E., 2003. Genetic distinction of wildcat (Felis silvestris) populations in Europe, and hybridization with domestic cats in Hungary. Mol. Ecol. 12, 2585–2598.PubMedCrossRefPubMedCentralGoogle Scholar
  39. Piry, S., Alapetite, A., Cornuet, J.-M., Paetkau, D., Baudouin, L., Estoup, A., 2004. GeneClass2: a software for genetic assignment and first-generation migrant detection. J. Hered. 95, 536–539.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Pritchard, J.K., Stephens, M., Donnelly, P., 2000. Inference of population structure using multilocus genotype data. Genetics 155, 945–959.PubMedPubMedCentralGoogle Scholar
  41. Ragni, B., Randi, E., 1986. Multivariate analysis of craniometric characters in European wild cat, domestic cat, and African wild cat (genus Felis). Z. Säugetierk. 51, 243–251.Google Scholar
  42. Raimer, F., 1994. Die aktuelle Situation der Wildkatze in Deutschland. In: Bund Naturschutz in Bayern e. V. (Hrsg.): Die Wildkatze in Deutschland. Vorkommen, Schutz und Lebensraum. Wiesenfeldener Reihe 13, 15–34.Google Scholar
  43. Randi, E., Ragni, B., 1991. Genetic variability and biochemical systematics of domestic and wild cat populations (Felis silvestris: Felidae). J. Mammal. 72, 79–88.CrossRefGoogle Scholar
  44. Randi, E., Pierpaoli, M., Beaumont, M., Ragni, B., Sforzi, A., 2001. Genetic identification of wild and domestic cats (Felis silvestris) and their hybrids using Bayesian clustering methods. Mol. Biol. Evol. 18, 1679–1693.CrossRefGoogle Scholar
  45. Randi, E., 2007. Detecting hybridization between wild species and their domesticated relatives. Mol. Ecol. 17, 285–293.CrossRefGoogle Scholar
  46. Rannala, B., Mountain, J.L., 1997. Detecting immigration by using multilocus genotypes. Proc. Natl. Acad. Sci. USA 94, 9197–9201.PubMedPubMedCentralGoogle Scholar
  47. Raymond, M., Rousset, F., 1995. GENEPOP population genetics (version 1.2): software for exact tests and ecumenicism. J. Hered. 86, 248–249.CrossRefGoogle Scholar
  48. Rice, W.R., 1989. Analysing tables of statistical tests. Evolution 43, 223–225.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Rothe, G.M., 1994. Electrophoresis of Enzymes. Laboratory Methods. Springer LAB Manual. Springer Verlag, Berlin. S-Plus 2000. Professional Release 2©. Lucent Technologies, Inc.CrossRefGoogle Scholar
  50. Sambrook, J., Fritsch, E.F., Maniatis, T., 1989. Molecular Cloning. A Laboratory Manual. Bde. 1–3, 2. Aufl. Cold Spring Harbor Press, Cold Spring Harbor.Google Scholar
  51. Schauenberg, P., 1969. L’identification du Chat forestier d’Europe, Felis s. silvestris Schreber 1777, par une méthode ostéométrique. Rev. Suisse Zool. 76, 433–441.PubMedPubMedCentralGoogle Scholar
  52. Schauenberg, P., 1977. Longueur de l’intestin du chat forestier, Felis silvestris Schreber 1777. Rev. Suisse Zool. 86, 527–534.CrossRefGoogle Scholar
  53. Schneider, S., Roessli, D., Excoffier, L., 2000. Arlequin: A Software for Population Genetics Data Analysis. Ver 2.000. Genetics and Biometry Laboratory, Department of Anthropology, University of Geneva, Geneva.Google Scholar
  54. Stahl, P., Artois, M., 1991. Status and conservation of the wildcat in Europe and around the Mediterranean rim. Council of Europe, Strasbourg.Google Scholar
  55. Tiedemann, R., Harder, J., Gmeiner, C., Haase, E., 1996a. Mitochondrial DNA sequence patterns of Harbor porpoises (Phocoena phocoena) from the North and Baltic Sea. Z. Säugetierkd. 61, 104–111.Google Scholar
  56. Tiedemann, R., Hammer, S., Suchentrunk, F., Hartl, G.B., 1996b. Allozyme variability in medium-sized and large mammals: determinats, estimators, and significance for conservation. Biodivers. Lett. 3, 81–91.CrossRefGoogle Scholar
  57. Todd, N.B., 1977. Cats and commerce. Sci. Am. 237, 100–107.CrossRefGoogle Scholar
  58. Vigne, J.D., Guilaine, J., Debue, K., Haye, L., Gérard, P., 2004. Early taming of the cat in Cyprus. Science 304, 259.PubMedCrossRefGoogle Scholar
  59. Vilâ, C., Savolainen, P., Maldonado, J.E., Amorim, I.R., Rice, J.E., Honeycutt, R.L., Crandall, K.A., Lundeberg, J., Wayne, R.K., 1997. Multiple and ancient origins of the domestic dog. Science 276, 1687–1689.PubMedCrossRefGoogle Scholar
  60. Wilkinson, G.S., Mayer, F., Kerth, G., Petri, B., 1997. Evolution of repeated sequence arrays in the D-Loop region of bat mitochondrial DNA. Genetics 146, 1035–1048.PubMedPubMedCentralGoogle Scholar
  61. Wiseman, R., O’Ryan, C., Harley, E.H., 2000. Microsatellite analysis reveales that domestic cat (Felis catus) and southern African wild cat (Flybica) are genetically distinct. Anim. Conserv. 3, 221–228.CrossRefGoogle Scholar
  62. Zimina, R.P., 1962. The mammals of Bulgaria, their faunal composition and peculiarities of their distribution. Zool. Zh. Moscow 41, 1226–1237.Google Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2009

Authors and Affiliations

  • Iris Eckert
    • 1
  • Franz Suchentrunk
    • 2
  • Georgi Markov
    • 3
  • Günther B. Hartl
    • 1
    Email author
  1. 1.Spezielle Zoologie, Zoological InstituteChristian-Albrechts-University, KielKielGermany
  2. 2.Research Institute of Wildlife EcologyUniversity of Veterinary Medicine ViennaViennaAustria
  3. 3.Institute of ZoologyBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations