Advertisement

Mammalian Biology

, Volume 74, Issue 4, pp 263–273 | Cite as

Genetic structure of, and hybridisation between, red (Cervus elaphus) and sika (Cervus nippon) deer in Ireland

  • Allan D. McDevittEmail author
  • Ceiridwen J. Edwards
  • Peter O’Toole
  • Padruig O’Sullivan
  • Catherine O’Reilly
  • Ruth F. Carden
Original Investigation

Abstract

This study investigated the levels of genetic diversity and variation exhibited by red and sika deer in Ireland, along with the extent and regional location of hybridisation between these two species. Bi-parental (microsatellites) and maternally-inherited (mitochondrial DNA) genetic markers were utilised that allowed comparisons between 85 red deer from six localities and 47 sika deer from 3 localities in Ireland. Population genetic structure was assessed using Bayesian analysis, indicating the existence of two genetic clusters in sika deer and three clusters in red deer. Levels of genetic diversity were low in both red and sika deer. These genetic data presented herein indicate a recent introduction of sika deer and subsequent translocations in agreement with historical data. The origins of the current red deer populations found in Ireland, based on genetic data presented in this study, still remain obscure. All hybrid deer (red/sika) found in this study were found in Wicklow, Galway and Mayo where the ‘red-like’ deer exhibited sika deer alleles/haplotypes, and vice versa in the case of Wicklow. Molecular methods proved invaluable in the identification of the hybrid deer because identification of hybrids based on phenotypic external appearances (pelage and body proportions) can be misleading. Areas where red and sika deer are sympatric need to be assessed for the level and extent of hybridisation occurring and thus need to be managed in order to protect the genetic integrity of ‘pure’ red deer populations.

Keywords

Cervus Hybridisation Ireland Microsatellites Mitochondrial DNA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bandelt, H.-J., Forster, P., Röhl, A., 1999. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Banwell, D.B., 1994. The Royal Stags of Windsor. The Halcyon Press, Halcyon Publishing Ltd., New Zealand.Google Scholar
  3. Bishop, M.D., Kappes, S.M., Keele, K.W., et al., 1994. A genetic linkage map for cattle. Genetics 136, 619–639.PubMedPubMedCentralGoogle Scholar
  4. Bonnet, A., Thévenon, S., Maudet, F., Maillard, J.C., 2002. Efficiency of semi-automated fluorescent multiplex PCRs with 11 microsatellite markers for genetic studies of deer populations. Anim. Genet. 33, 343–350.PubMedCrossRefGoogle Scholar
  5. Brooke, D., 1898. Hybrid red deer. The Field 92, 182.Google Scholar
  6. Buchanan, F.C., Crawford, A.M., 1993. Ovine microsatellites at the OarFCB11, OarFCB128, OarFCB193, OarFCB266 and OarFCB304. Anim. Genet. 24, 145.CrossRefGoogle Scholar
  7. Carden, R.F., 2006. Putting flesh on bones: the life and death of the giant Irish deer (Megaloceros giganteus, Blumenbach 1803). Unpublished Ph.D. Thesis, National University of Ireland, University College Dublin, Ireland.Google Scholar
  8. Diaz, A., Hughes, S., Putman, R., Mogg, R., Bond, J.M., 2006. A genetic study of sika (Cervus nippon) in the New Forest and in the Purbeck region, southern England: is there evidence of recent or past hybridisation with red deer (Cervus elaphus)? J. Zool. London 270, 227–235.CrossRefGoogle Scholar
  9. Falush, D., Stephens, M., Pritchard, J.K., 2003. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164, 1567–1587.PubMedPubMedCentralGoogle Scholar
  10. Fehily, J., Shipman, P., 1967. The Killarney Valley survey. An Forás Forbartha Teoranta (The National Institute for Physical Planning and Construction Research), Dublin 12.Google Scholar
  11. Finnegan, L.A., Edwards, C.J., Rochford, J.M., 2008. Origin of, and conservation units in, the Irish red squirrel (Sciurus vulgaris) population. Conserv. Genet. 9, 1099–1109.CrossRefGoogle Scholar
  12. Frantz, A.C., Pourtois, J.T., Heuertz, M., Schley, L., Flamand, M.C., Krier, A., Bertouille, S., Chaumont, F., Burke, T., 2006. Genetic structure and assignment tests demonstrate illegal translocation of red deer (Cervus elaphus) into a continuous population. Mol. Ecol. 15, 3191–3203.PubMedCrossRefGoogle Scholar
  13. Goodman, S.J., Barton, N.H., Swanson, G., Abernethy, K., Pemberton, J.M., 1999. Introgression through rare hybridisation: a genetic study of a hybrid zone between red and sika deer (Genus Cervus) in Argyll, Scotland. Genetics 152, 355–371.PubMedPubMedCentralGoogle Scholar
  14. Goudet, J., 1995. FSTAT (Version 1.2): a computer program to calculate F-statistics. J. Hered. 86, 485–186.CrossRefGoogle Scholar
  15. Hajji, G.M., Zachos, F.E., Charfi-Cheikrouha, F., Hartl, G.B., 2007. Conservation genetics of the imperilled Barbary red deer in Tunisia. Anim. Genet. 10, 229–235.Google Scholar
  16. Hamill, R.M., Doyle, D., Duke, E.J., 2006. Spatial patterns of genetic diversity across European subspecies of the mountain hare, Lepus timidus L. Heredity 97, 355–365.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Hamill, R.M., Doyle, D., Duke, E.J., 2007. Microsatellite analysis of mountain hares (Lepus timidus hibernicus): low genetic differentiation and possible sex-bias in dispersal. J. Mammol. 88, 784–792.CrossRefGoogle Scholar
  18. Harrington, R., 1973. Hybridisation among deer and its implications for conservation. Ir. For. J. 30, 64–78.Google Scholar
  19. Harrington, R., 1979. Some aspects of the biology and taxonomy of the deer of the county Wicklow region, Ireland. Unpublished Ph.D. Thesis, National University of Ireland, University College Dublin, Ireland.Google Scholar
  20. Harrington, R., 1982. The hybridisation of red deer (Cervus elaphus L. 1758) and Japanese sika deer (C. nippon Temminck 1838). Proc. Int. Game Con. 14, 559–571.Google Scholar
  21. Hayden, T., Harrington, R., 2000. Exploring Irish Mammals. Town House and Country House Ltd., Dublin.Google Scholar
  22. Hmwe, S.S., Zachos, F.E., Sale, J.B., Rose, H.R., Hartl, G.B., 2006. Genetic variability and differentiation in red deer (Cervus elaphus) from Scotland and England. J. Zool. London 270, 479–487.CrossRefGoogle Scholar
  23. Long, A.M., Moore, N.P., Hayden, T.J., 1998. Vocalisations in red deer (Cervus elaphus), sika deer (Cervus nippon), and red × sika hybrids. J. Zool. London 244, 123–134.Google Scholar
  24. McCormick, F., 1999. Early evidence for wild animals in Ireland. In: Benecke, N. (Ed.), The Holocene History of the European Vertebrate Fauna: Modern Aspects of Research. Verlag Marie Leidorf GmbH, Rahden, Germany, pp. 355–371.Google Scholar
  25. McDevitt, A.D., Mariani, S., Hebblewhite, M., DeCesare, N.J., Morgantini, L., Seip, D., Weckworth, B.V., Musiani, M., 2009. Survival in the Rockies of an endangered hybrid swarm from diverged caribou (Rangifer tarandus) lineages. Mol. Ecol. 18, 665–679.PubMedCrossRefGoogle Scholar
  26. McDevitt, A.D., Rambau, R.V., O’Brien, J., McDevitt, C.D., Hayden, T.J., Searle, J.B., in press. Genetic variation in Irish pygmy shrews Sorex minutus (Soricomorpha: Sorici-dae): implications for colonisation history. Biol. J. Linn. Soc.Google Scholar
  27. Mezzalani, A., Zhang, Y., Redaelli, L., et al., 1995. Chromosomal localization and molecular characterization of 53 cosmid-derived bovine microsatellites.Mamm. Genome 6, 629–635.Google Scholar
  28. Moffat, C.B., 1938. Mammals of Ireland. Proc. R. Ir. Acad. 44B, 61–128.Google Scholar
  29. Nielsen, E.K., Olesen, C.R., Pertoldi, C., Gravlund, P., Barker, J.S.F., Mucci, N., Randi, E., Loeschcke, V., 2008. Genetic structure of the Danish red deer (Cervus elaphus). Biol. J. Linn. Soc. 95, 688–701.CrossRefGoogle Scholar
  30. Nussey, D.H., Coltman, D.W., Coulson, T., Kruuk, L.E.B., Donald, A., Morris, S.J., Clutton-Brock, T.H., Pemberton, J., 2005. Rapidly declining fine-scale genetic structure in female red deer. Mol. Ecol. 14, 3395–3405.PubMedCrossRefGoogle Scholar
  31. Pérez-Espona, S., Pérez-Barbería, F.J., McLeod, J.E., Jiggins, C.D., Gordon, I.J., Pemberton, J.M., 2008. Landscape features affect gene flow of Scottish Highland red deer (Cervus elaphus). Mol. Ecol. 17, 981–996.PubMedCrossRefGoogle Scholar
  32. Pérez-Espona, S., Pemberton, J.M., Putman, R., 2009a. Red and sika deer in the British Isles, current management issues and management policy. Mamm. Biol. this issue, doi:10.1016/j.mambio.2009.01.003.CrossRefGoogle Scholar
  33. Pérez-Espona, S., Pérez-Barberia, F.J., Goodall-Copestake, W.P., Jiggins, C.D., Gordon, I.J., Pemberton, J.M., 2009b. Genetic diversity and population structure of Scottish Highland red deer (Cervus elaphus) populations: a mito-chondrial survey. Heredity 102, 199–210.PubMedCrossRefGoogle Scholar
  34. Powerscourt, Viscount., 1884. On the acclimatization of Japanese deer at Powerscourt. Proc. Zool. Soc. London, 207–209.Google Scholar
  35. Pritchard, J.K., Stephens, M., Donnelly, P., 2000. Inference of population structure using multilocus genotype data. Genetics 155, 945–959.PubMedPubMedCentralGoogle Scholar
  36. Raymond, M., Rousset, F., 1995. GENEPOP (Version 1.2): population genetics software for exact tests and ecumenicism. J. Hered. 86, 248–249.CrossRefGoogle Scholar
  37. Reyer, H.U., 2008. Mating with the wrong species can be right. Trends Ecol. Evol. 23, 289–292.PubMedCrossRefGoogle Scholar
  38. Rozas, J., Sánchez-DelBarrio, J.C., Messeguer, X., Rozas, R., 2003. DnaSP, DNA polymorphism analysis by coalescent and other methods. Bioinformatics 19, 2496–2497.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Ryan, S., 2001. Deer forests, game shooting and landed estates in the south west of Ireland 1840–1970. Unpublished Ph.D. Thesis, National University of Ireland, University College Cork, Ireland.Google Scholar
  40. Sanz, N., Araguas, R.M., Fernandez, R., Vera, M., Garciá-Marıín, J.-L., 2009. Efficiency of markers and methods for detecting hybrids and introgression in stocked populations. Conserv. Genet. 10, 225–236.CrossRefGoogle Scholar
  41. Searle, J.B., 2008. The colonisation of Ireland by mammals. In: Davenport, J.L., Sleeman, D.P., Woodman, P.C. (Eds.), Mind the Gap: Postglacial Colonisation of Ireland. Ir. Nat. J. Spec. Supp., pp. 109–115.Google Scholar
  42. Seehausen, O., 2004. Hybridisation and adaptive radiation. Trends Ecol. Evol. 19, 198–207.PubMedCrossRefGoogle Scholar
  43. Senn, H.V., Pemberton, J.M., 2009. Variable extent of hybridisation between invasive sika (Cervus nippon) and native red deer (C. elaphus) in a small geographical area. Mol. Ecol. 18, 862–876.PubMedCrossRefGoogle Scholar
  44. Slate, J., Coltman, D.W., Goodman, S.J., MacLean, I., Pemberton, J.M., Williams, J.L., 1998. Bovine microsatellites are highly conserved in red deer (Cervus elaphus), sika deer (Cervus nippon) and Soay sheep (Ovis aries). Anim. Genet. 29, 307–315.PubMedCrossRefGoogle Scholar
  45. Staines, B.W., Langbein, J., Burkitt, T.D., 2008. Red deer. In: Harris, S., Yalden, D.W. (Eds.), Mammals of the British Isles, fourth ed. Mammal Society, London, pp. 573–587.Google Scholar
  46. Tamura, K., Dudley, J., Nei, M., Kumar, S., 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596–1599.CrossRefGoogle Scholar
  47. Whitehead, G.K., 1960. The Deerstalking Grounds of Great Britain and Ireland. Hollis and Carter, London.Google Scholar
  48. Whitehead, G.K., 1964. The Deer of Great Britain and Ireland: An Account of their History Status and Distribution. Routledge and Kegan Paul, London.Google Scholar
  49. Wilson, G.A., Strobeck, C., Wu, L., Coffin, J.W., 1997. Characterization of microsatellite loci in caribou Rangifer tarandus, and their use in other artiodactyls. Mol. Ecol. 6, 697–699.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Woodman, P., McCarthy, M., Monaghan, N., 1997. The Irish Quaternary Fauna Project. Quat. Sci. Rev. 16, 129–159.CrossRefGoogle Scholar
  51. Xia, X., Xie, Z., 2001. DAMBE: data analysis in molecular biology and evolution. J. Hered. 92, 371–373.PubMedCrossRefGoogle Scholar
  52. Zachos, F.E., Hartl, G.B., Apollonio, M., Reutershan, T., 2003. On the phylogeographic origin of the Corsican red deer (Cervus elaphus corsicanus): evidence from microsatellites and mitochondrial DNA. Mamm. Biol. 68, 284–298.CrossRefGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2009

Authors and Affiliations

  • Allan D. McDevitt
    • 1
    • 2
    Email author
  • Ceiridwen J. Edwards
    • 3
  • Peter O’Toole
    • 4
  • Padruig O’Sullivan
    • 4
  • Catherine O’Reilly
    • 1
  • Ruth F. Carden
    • 5
  1. 1.Department of Chemical and Life SciencesWaterford Institute of TechnologyWaterfordIreland
  2. 2.Faculty of Environmental DesignUniversity of CalgaryCalgaryCanada
  3. 3.Smurfit Institute of GeneticsTrinity College DublinDublin 2Ireland
  4. 4.National Parks and Wildlife ServiceKillarneyIreland
  5. 5.National Museum of Ireland-Natural HistoryDublin 2Ireland

Personalised recommendations