Advertisement

Mammalian Biology

, Volume 75, Issue 3, pp 191–197 | Cite as

Geometric morphometrics of the mandible in the Iberian desman, Galemys pyrenaicus (Mammalia: Soricomorpha): Is there a significant variation in form during post-weaning life?

  • Jacint VenturaEmail author
  • María José López-Fuster
Original Investigation

Abstract

Geometric morphometrics was applied on the mandible of the Iberian desman, Galemys pyrenaicus, to determine for the first time possible sexual and post-weaning shape variation of this structure in a talpid species. Analyses were complemented by evaluating the effect of sex and age on size. The sample consisted of collection specimens from locations in the Cantabrian Mountains (northern Spain). Desmans were grouped into four relative age classes according to tooth wear. The shape of the internal side of the mandible was represented by 15 two-dimensional landmarks. Once young desmans leave the nest there is no significant variation in the form (size and shape) of the mandible. Thus, possible osseous changes and tooth abrasion derived from ageing do not produce obvious variation in mandible form. Mandible shape was significantly correlated with mandible size, resulting in a range of shapes that varies from a slender to a robust morphology. This variation was independent of geographic factors. Since the effect of non-heritable environmental influences on mandible size and shape was negligible, it can be considered that the mandible form of post-weaned desmans is the direct product of interactions between different developmental processes.

Keywords

Galemys pyrenaicus Geometric morphometrics Mandible Size Shape 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atchley, W.R., 1993. Genetic and developmental aspects of variability in the mammalian mandible. In: Hanke, J., Hall, B.K. (Eds.), The Skull, vol. 1. The University of Chicago Press, Chicago, pp. 207–247.Google Scholar
  2. Atchley, W.R., Cowley, D.E., Vogl, C., McLellan, T., 1992. Evolutionary divergence, shape change, and genetic correlation structure in the rodent mandible. Syst. Biol. 41, 196–221.CrossRefGoogle Scholar
  3. Atchley, W.R., Hall, B., 1991. A model for development an evolution of complex morphological structures. Biol. Rev. 66, 101–157.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Barrionuevo, F.J., Zurita, F., Burgos, M., Jiménez, R., 2004. Developmental stages and growth rate of the mole Talpa occidentalis (Insectivora, Mammalia). J. Mammal. 85, 120–125.CrossRefGoogle Scholar
  5. Barrow, E., MacLeod, N., 2008. Shape variation in the mole dentary (Talpidae: Mammalia). Zool. J. Linn. Soc. 153, 187–211.CrossRefGoogle Scholar
  6. Bleich, V.C., Stahmann, J.G., Bowyer, R.T., Blake, J.E., 1990. Osteoporosis and cranial asymmetry in a mountain sheep (Ovis canadensis). J. Wildl. Dis. 26, 372–376.CrossRefGoogle Scholar
  7. Bookstein, F.L., 1991. Morphometric Tools for Landmark Data. Cambridge University Press, Cambridge.Google Scholar
  8. Cardini, A., Tongiorgi, P., 2003. Yellow-bellied marmots (Marmota flaviventris) “in the shape space” Rodentia, Sciuridae): sexual dimorphism, growth and allometry of the mandible. Zoomorphology 122, 11–23.Google Scholar
  9. Carmona, F.D., Motokawa, M., Tokita, M., Tsuchiya, K., Jiménez, R., Sánchez-Villagra, M.R., 2008. The evolution of female mole ovotestes evidences high plasticity of mammalian gonad development. J. Exp. Zool. (Mol. Dev. Evol.) 310, 259–266.CrossRefGoogle Scholar
  10. Carraway, L.N., Verts, B.J., Jones, M.L., Whitaker Jr., J.O., 1996. A search for age-related changes in bite force and diet in shrews. Am. Midl. Nat. 135, 231–240.CrossRefGoogle Scholar
  11. Castién, E., Gosálbez, J., 1995. Diet of Galemys pyrenaicus (Geoffroy, 1811) in the north of the Iberian Peninsula. Neth. J. Zool. 45, 422–430.Google Scholar
  12. Daigo, Y., Matsuura, T., Sato, H., 2005. Differential bone histomorphometric characters of the mandible in senescence-accelerated mice (SAMP6 and SAMP8): murine models for senile osteoporosis and temporomandibular joint osteoarthritis. J. Hard Tissue Biol. 14, 13–19.CrossRefGoogle Scholar
  13. Duarte, L.C., Monteiro, L.R., von Zuben, F.J., dos Reis, S.F., 2000. Variation in mandible shape in Trichomys apereoides (Mammalia: Rodentia): geometric analysis of a complex morphological structure. Syst. Biol. 49, 563–578.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Garriga, R.M., Sainsbury, A.W., Goodship, A.E., 2004. Bone assessment of free-living red squirrels (Sciurus vulgaris) from the United Kingdom. J. Wildl. Dis. 40, 515–522.PubMedCrossRefPubMedCentralGoogle Scholar
  15. González-Esteban, J.E., Castién, E., Gosálbez, J., 1999. Morphological and colour variation in the Pyrenean desman Galemys pyrenaicus (Geoffroy, 1811). Z. Säugetierkd. 64, 1–11.Google Scholar
  16. González-Esteban, J.E., Villate, I., Castién, E., Rey, I., Gosálbez, J., 2002. Age determination of Galemys pyrenaicus. Acta Theriol. 47, 107–112.CrossRefGoogle Scholar
  17. Grulich, I., 1967. Die Variabilität der taxonomischen Merkmale des Maulwurfs (Talpa europaea L., Insectivora) im zusammenhang mit Alter und Geschlecht. Zool. Listy 16, 125–144.Google Scholar
  18. Hindelang, M., Peterson, R.O., 1996. Osteoporotic skull lesions in moose at Isle Royale National Park. J. Wildl. Dis. 32, 105–108.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Hylander, W., 1985. Mandibular function and biomechanical stress and scaling. Am. Zool. 25, 315–330.CrossRefGoogle Scholar
  20. Jubb, K.V.F., Kennedy, C., Palmer, N., 1985. Pathology of Domestic Animals, third ed., vol. 2. Academic Press, San Diego.CrossRefGoogle Scholar
  21. Juckwer, E.A., 1990. Galemys pyrenaicus (Geoffroy, 1811) — Pyrenäen-Desman. In: Niethammer, J., Krapp, F. (Eds.), Handbuch der Säugetiere Europas, vol. 1. Akademische Verlagsgesellschaft, Wiesbaden, pp. 79–92.Google Scholar
  22. Klingenberg, C.P., Mebus, K., Auffray, J.C., 2003. Developmental integration in a complex morphological structure: how distinct are the modules in the mouse mandible? Evol. Dev. 5, 522–531.PubMedCrossRefPubMedCentralGoogle Scholar
  23. López-Fuster, M.J., García-Perea, R., Fernández-Salvador, R., Gisbert, J., Ventura, J., 2006. Craniometric variability of the Iberian desman, Galemys pyrenaicus (Mammalia: Erinaceomorpha: Talpidae). Folia Zool. 55, 29–42.Google Scholar
  24. Marcus, L.F., Corti, M., Loy, A., Naylor, G.J.P., Slice, D.E., 1996. Advances in Morphometrics. Plenum Press, New York.CrossRefGoogle Scholar
  25. Matsuka, Y., Iijima, T., Suzuki, K., Kuboki, T., Yamashita, A., 1998. Macroscopic osseous changes in the temporomandibular joint related to dental attrition in Japanese macaque skull. J. Oral Rehabil. 25, 687–693.PubMedCrossRefPubMedCentralGoogle Scholar
  26. Niethammer, J., 1970. Beobachtungen am Pyrenäen-Desman, Galemys pyrenaica. Bonn. Zool. Beitr. 21, 157–182.Google Scholar
  27. Nores, C., Queiroz, A.I., Gisbert, J., 2007. Galemys pyrenaicus Desmán ibérico. In: Palomo, J., Gisbert, J., Blanco, J.C. (Eds.), Atlas de los Mamíferos Terrestres de España. Dirección General de Conservación de la Naturaleza-SECEM-SECEMU, Madrid, pp. 92–95.Google Scholar
  28. Peyre, A., 1956. Ecologie et biogeographie du desman (Galemys pyrenaicus G.) dans les Pyrénées françaises. Mammalia 20, 405–418.CrossRefGoogle Scholar
  29. Peyre, A., 1961. Recherches sur l’intersexualité spécifique chez Galemys pyrenaicus. G. Arch. Biol. 73, 1–174.Google Scholar
  30. Puisségur, C., 1935. Recherches sur le desman des Pyrénées. Bull. Soc. Hist. Nat. Toulouse 67, 163–227.Google Scholar
  31. Queiroz, A.I., 1999. Galemys pyrenaicus (E. Geoffroy, 1811). In: Mitchell-Jones, A.J., Amori, G., Bogdanowicz, W., Kryštufek, B., Reijnders, P.J.H., Spitzenberger, F., Stubbe, M., Thissen, J.B.M., Vohralík, V., Zima, J. (Eds.), Atlas of European Mammals. Academic Press, London, pp. 78–79.Google Scholar
  32. Ravosa, M.J., 2000. Size and scaling of the mandible in living and extinct apes. Folia Primatol. 71, 305–322.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Rohlf, F.J., 1993. Relative warp analysis and an example of its application to mosquito wings. In: Marcus, L.F., Bello, E., García-Valdecasas, A. (Eds.), Contributions to Morphometrics. Museo Nacional de Ciencias Naturales 8, Madrid, pp. 131–160.Google Scholar
  34. Rohlf, F.J., 2000. On the use of shape spaces to compare morphometric methods. Hystrix 11, 8–24.Google Scholar
  35. Rohlf, F.J., 2006. TPS Series. Department of Ecology and Evolution, State University of New York, 〈life.-bio.sunysb.edu/morph/〉.Google Scholar
  36. Rohlf, F.J., Loy, A., Corti, M., 1996. Morphometric analysis of Old World Talpidae (Mammalia, Insectivora) using partial-warps scores. Syst. Biol. 45, 344–362.CrossRefGoogle Scholar
  37. Rohlf, F.J., Slice, D., 1990. Extensions of the Procrustes method for optimal superposition of landmarks. Syst. Zool. 39, 40–59.CrossRefGoogle Scholar
  38. Rubenstein, N.M., Cunha, G.R., Wang, Y.Z., Campbell, K.L., Conley, A.J., Catanua, K.C., Glickman, S.E., Place, N.J., 2003. Variation in ovarian morphology in four species of New World moles with a peniform clitoris. Reproduction 126, 713–719.PubMedCrossRefPubMedCentralGoogle Scholar
  39. Silbermann, M., Livne, E., 1979. Age-related degenerative changes in the mouse mandibular joint. J. Anat. 129, 507–520.PubMedPubMedCentralGoogle Scholar
  40. SPSS Inc., 2005. SPSS for Windows, Version 14.0. SPSS Inc., Chicago, IL.Google Scholar
  41. Turnbull, B.S., Cowan, D.F., 1999. Synovial joint disease in wild cetaceans. J. Wildl. Dis. 35, 511–518.PubMedCrossRefPubMedCentralGoogle Scholar
  42. Whidden, H.P., 2000. Comparative myology of moles and the phylogeny of the Talpidae (Mammalia, Lipotyphla). American Museum Novitates 3294, 53pp.CrossRefGoogle Scholar
  43. Ytrehus, B., Skagemo, H., Stuve, G., Sivertsen, T., Handeland, K., Vikoren, T., 1999. Osteoporosis, bone mineralization, and status of selected trace elements in two populations of moose calves in Norway. J. Wildl. Dis. 35, 204–211.PubMedCrossRefPubMedCentralGoogle Scholar
  44. Zelditch, M., Fink, W.L., Sheets, D.H., Swiderski, D.L., 2004. Geometric Morphometrics for Biologists: A Primer. Academic Press, San Diego.Google Scholar
  45. Zelditch, M., Wood, A.R., Bonett, R.M., Swiderski, D.L., 2008. Modularity of the rodent mandible: integrating bones, muscles, and teeth. Evol. Dev. 10, 756–768.PubMedCrossRefPubMedCentralGoogle Scholar
  46. Zurita, F., Barrionuevo, F., Berta, P., Ortega, E., Burgos, M., Jiménez, R., 2003. Abnormal sex duct development in female moles: the role of anti-Mullerian hormone and testosterone. Int. J. Dev. Biol. 47, 451–458.PubMedPubMedCentralGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2009

Authors and Affiliations

  1. 1.Departament de Biologia Animal, de Biologia Vegetal, i d’Ecologia, Facultat de BiociènciesUniversitat Autònoma de BarcelonaBarcelonaSpain
  2. 2.Departament de Biologia Animal, Facultat de BiologiaUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations