Mammalian Biology

, Volume 75, Issue 2, pp 151–159 | Cite as

Predicting animal performance through climatic and plant phenology variables: The case of an omnivore hibernating species in Finland

  • Claudia MelisEmail author
  • Ivar Herfindal
  • Kaarina Kauhala
  • Reidar Andersen
  • Kjell-Arild Høgda
Original Investigation


Annual variation in the environment is expected to influence individual performance, e.g. measured as body condition, such as body mass or fat deposition, through its direct or indirect effects on food abundance and availability. Such environmental variation is traditionally measured by climatic observation, but recently, measures of environmental phenology obtained from satellite images have been successfully used. We examined the performance of climatic and plant phenology variables in explaining body condition of an invasive omnivore species: the raccoon dog Nyctereutes procyonoides. We collected data on fat deposition of juveniles in southern Finland from the end of June to the beginning of November. A four-parametric logistic model was fitted separately for each province to the data by non-linear regression procedure and the residuals were compared to the expected average as measure of individual performance. These values were then analysed with respect to the environmental variables. Climatic variables describing spring conditions performed better than plant phenology variables in explaining the variation in fat deposition. Harsh spring conditions negatively affected the amount of fat deposed during the growing season. Plant phenology variables, effective in explaining life history traits in herbivores, might not reflect variation in food abundance and quality for omnivore species. We propose that in Europe raccoon dogs will benefit from climate warming, because of a longer growing season, but increased spring precipitation in the form of snow at higher latitudes might compensate for the effect of greater primary productivity and outline the border of their expansion towards harsher environments.


Fat reserves Nonindigenous species Normalized difference vegetation index (NDVI) Nyctereutes procyonoides Raccoon dog 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allendorf, F.W., Lundquist, L.L., 2003. Introduction: population biology, evolution, and control of invasive species. Conserv. Biol. 17, 24–30.CrossRefGoogle Scholar
  2. Anderson, K.J., Jetz, W., 2005. The broad-scale ecology of energy expenditure of endotherms. Ecol. Lett. 8, 310–318.CrossRefGoogle Scholar
  3. Bates, D., 2007. lme4: linear mixed-effects models using S4 classes. R package version 0.99875-6.Google Scholar
  4. Boyce, M.S., 1979. Seasonality and patterns of natural selection for life histories. Am. Nat. 114, 569–583.CrossRefGoogle Scholar
  5. Byers, J.E., Reichard, S., Randall, J.M., Parker, I.M., Smith, C.S., Lonsdale, W.M., Atkinson, I.A.E., Seastedt, T.R., Williamson, M., Chornesky, E., Hayes, D., 2002. Directing research to reduce the impacts of nonindigenous species. Conserv. Biol. 16, 630–640.CrossRefGoogle Scholar
  6. Burnham, K.P., Anderson, D.R., 2002. Model Selection and Multi-Model Inference: A Practical Information-Theoretic Approach. Springer, Berlin.Google Scholar
  7. Fraedrich, K., Gerstengarbe, F.-W., Werner, P.C., 2001. Climate shifts during the last century. Climatic Change 50, 405–417.CrossRefGoogle Scholar
  8. France, J., Dijkstra, J., Dhanoa, M.S., 1996. Growth functions and their application in animal science. Ann. Zootech. 45, 165–174.CrossRefGoogle Scholar
  9. Garel, M., Solberg, E.J., Saether, B.-E., Herfindal, I., Høgda, K.-A., 2006. The length of growing season and adult sex ratio affect sexual size dimorphism in moose. Ecology 87, 745–758.PubMedCrossRefGoogle Scholar
  10. Geiser, F., 1988. Reduction of metabolism during hibernation and daily torpor in mammals and birds-temperature effect or physiological inhibition. J. Comp. Physiol. B 158, 25–37.PubMedCrossRefGoogle Scholar
  11. Graham, M.H., 2003. Confronting multicollinearity in ecological multiple regression. Ecology 84, 2809–2815.CrossRefGoogle Scholar
  12. Helle, E., Kauhala, K., 1991. Distribution history and present status of the raccoon dog in Finland. Holarctic. Ecol. 14, 278–286.Google Scholar
  13. Helle, E., Kauhala, K., 1995. Reproduction in the raccoon dog in Finland. J. Mammal. 76, 1036–1046.CrossRefGoogle Scholar
  14. Herfindal, I., Linnell, J.D.C., Odden, J., Nilsen, E.B., Andersen, R., 2005. Prey density, environmental productivity and home-range size in the Eurasian lynx (Lynx lynx). J. Zool. 265, 63–71.CrossRefGoogle Scholar
  15. Herfindal, I., Sæther, B.-E., Solberg, E.J., Andersen, R., Høgda, K.-A., 2006a. Population characteristics predict responses in moose body mass to temporal variation in the environment. J. Anim. Ecol. 75, 1100–1118.CrossRefGoogle Scholar
  16. Herfindal, I., Solberg, E.J., Sæther, B.-E., Høgda, K.-A., Andersen, R., 2006b. Environmental phenology and geographical gradients in moose body mass. Oecologia 150, 213–224.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Humphries, M.M., Thomas, D.W., Speakman, J.R., 2002. Climate-mediated energetic constraints on the distribution of hibernating mammals. Nature 418, 313–316.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Humphries, M.M., Umbanhowar, J., McCann, K.S., 2004. Bioenergetic prediction of climate change impacts on northern mammals. Integr. Comp. Biol. 44, 152–162.PubMedCrossRefGoogle Scholar
  19. Inouye, D.W., Barr, B., Armitage, K.B., Inouye, B.D., 2000. Climate change is affecting altitudinal migrants and hibernating species. Proc. Natl. Acad. Sci. USA 97, 1630–1633.PubMedCrossRefPubMedCentralGoogle Scholar
  20. Jędrzejewski, W., Schmidt, K., Theuerkauf, J., Jędrzejewska, B., Selva, N., Zub, K., Szymura, L., 2002. Kill rates and predation by wolves on ungulate populations in Bialowieza Primeval Forest (Poland). Ecology 83, 1341–1356.Google Scholar
  21. Karlsen, S.R., Elvebakk, A., Høgda, K.A., Johansen, B., 2006. Satellite-based mapping of the growing season and bioclimatic zones in Fennoscandia. Global. Ecol. Biogeogr. 15, 416–430.CrossRefGoogle Scholar
  22. Kauhala, K., 1993. Growth, size, and fat reserves of the raccoon dog in Finland. Acta Theriol. 38, 139–150.CrossRefGoogle Scholar
  23. Kauhala, K., 1996. Reproductive strategies of the raccoon dog and the red fox in Finland. Acta Theriol. 41, 51–58.CrossRefGoogle Scholar
  24. Kauhala, K., Kaunisto, M., Helle, E., 1993. Diet of the raccoon dog, Nyctereutes procyonoides, in Finland. Z. Saugetierkd. 58, 129–136.Google Scholar
  25. Kauhala, K., Laukkanen, P., von Rege, I., 1998. Summer food composition and food niche overlap of the raccoon dog, red fox and badger in Finland. Ecography 21, 457–463.CrossRefGoogle Scholar
  26. Melis, C., Szafranska, P.A., Jędrzejewska, B., Barton, K., 2006. Biogeographical variation in the population density of wild boar (Sus scrofa) in western Eurasia. J. Biogeogr. 33, 803–811.CrossRefGoogle Scholar
  27. Millar, J.S., Hickling, G.J., 1990. Fasting endurance and the evolution of mammalian body size. Funct. Ecol. 4, 5–12.CrossRefGoogle Scholar
  28. Mustonen, A.M., Asikainen, J., Kauhala, K., Paakkonen, T., Nieminen, P., 2007. Seasonal rhythms of body temperature in the free-ranging raccoon dog (Nyctereutes procyonoides) with special emphasis on winter sleep. Chronobiol. Int. 24, 1095–1107.PubMedCrossRefGoogle Scholar
  29. Myneni, R.B., Hall, F.G., Sellers, P.J., Marshak, A.L., 1995. The interpretation of spectral vegetation indexes. IEEE Trans. Geosci. Remote Sensing 33, 481–486.CrossRefGoogle Scholar
  30. Myneni, R.B., Hoffmann, S., Knyazikhin, Y., Privette, J.L., Glassy, J., Tian, Y., Wang, Y., Song, X., Zhang, Y., Smith, G.R., Lotsch, A., Friedl, M., Morisette, J.T., Votava, P., Nemani, R.R., Running, S.W., 2002. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sensing Environ. 83, 214–231.CrossRefGoogle Scholar
  31. Nilsen, E.B., Herfindal, I., Linnell, J.D.C., 2005. Can intra-specific variation in carnivore home-range size be explained using remote-sensing estimates of environmental productivity? Ecoscience 12, 68–75.CrossRefGoogle Scholar
  32. Pettorelli, N., Vik, J.O., Mysterud, A., Gaillard, J.-M., Tucker, C.J., Stenseth, N.C., 2005. Using the satellite-derived NDVI to assess ecological responses to environmental change. TREE 20, 503–510.PubMedGoogle Scholar
  33. Pettorelli, N., Gaillard, J.-M., Mysterud, A., Duncan, P., Stenseth, N.C., Delorme, D., Van Laere, G., Toïgo, C., Klein, F., 2006. Using a proxy of plant productivity (NDVI) to find key periods for animal performance: the case of roe deer. Oikos 112, 565–572.CrossRefGoogle Scholar
  34. Pimentel, D., Lach, L., Zuniga, R., Morrison, D., 2000. Environmental and economic cost of nonindigenous species in the United States. Bioscience 50, 53–65.CrossRefGoogle Scholar
  35. Pinheiro, J.C., Bates, D.M., 2002. Mixed-Effect Models in S and S-Plus. Springer, New York, USA.Google Scholar
  36. Pond, C.M., 1981. Storage. In: Townsend, C.R., Calow, P. (Eds.), Physiological Ecology: An Evolutionary Approach to Resource Use. Blackwell Scientific Publications, Oxford, UK, pp. 190–221.Google Scholar
  37. R Development Core Team, 2008. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN:3-900051-07-0, URL <>.Google Scholar
  38. Reed, B.C., Brown, J.F., Vanderzee, D., Loveland, T.R., Merchant, J.W., Ohlen, D.O., 1994. Measuring phenological variability from satellite imagery. J. Veg. Sci. 5, 703–714.CrossRefGoogle Scholar
  39. Selva, N., Jędrzejewska, B., Jędrzejewski, W., Wajrak, A., 2003. Scavenging on European bison carcasses in Białowieża Primeval Forest (eastern Poland). Ecoscience 10, 303–311.CrossRefGoogle Scholar
  40. Stenseth, N.C., Mysterud, A., Ottersen, G., Hurrell, J.W., Chan, K.S., Lima, M., 2002. Ecological effects of climate fluctuations. Science 297, 1292–1296.PubMedCrossRefGoogle Scholar
  41. Swan, H., 1974. Thermoregulation and Bioenergetics: Patterns for Vertebrate Survival. Elsevier, New York.Google Scholar
  42. Venables, W.N., Ripley, B.D., 2002. Modern Applied Statistics with S, fourth ed. Springer, New York.CrossRefGoogle Scholar
  43. Walker, B., Steffen, W., 1997. An overview of the implications of global change for natural and managed terrestrial ecosystems. Conserv. Ecol. [online] 1, 2 URL: <>.CrossRefGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2009

Authors and Affiliations

  • Claudia Melis
    • 1
    Email author
  • Ivar Herfindal
    • 1
    • 3
  • Kaarina Kauhala
    • 2
  • Reidar Andersen
    • 3
  • Kjell-Arild Høgda
    • 4
  1. 1.Centre for Conservation Biology, Department of BiologyNorwegian University of Science and TechnologyTrondheimNorway
  2. 2.Finnish Game and Fisheries Research InstituteTurkuFinland
  3. 3.Museum of Natural History and ArchaeologyNTNUTrondheimNorway
  4. 4.Norut Information Technology ASTromsøNorway

Personalised recommendations