Mammalian Biology

, Volume 75, Issue 1, pp 45–68 | Cite as

Craniometric variation in the tiger (Panthera tigris): Implications for patterns of diversity, taxonomy and conservation

  • Ji H. MazákEmail author
Original Investigation


Patterns of geographical variation in tigers are reviewed extensively by a morphometric analysis based on 273 skulls of certain wild origin. The following principal observations emerging from this investigation are found:
  1. 1.

    Modern tigers contain two basic forms: the mainland Asia tiger and the Sunda Island tiger. They are differentiated markedly in skull morphology as well as other morphological characters, the characteristic skull shape and small body size in Java/Bali tigers can be interpreted as adaptational responses to a particular island landscape type and prey species fauna, an evolutionary process known as insular dwarfism.

  2. 2.

    The Sumatran tiger (P.t. sumatrae) probably represents a hybrid of mainland and Island tigers, which originated from mainland Southeast Asia, colonized Indonesia and hybridized with the Sunda island tigers (Java tiger) during the late Pleistocene, and was subsequently completely isolated from both the mainland Southeast Asia and Java/Bali populations.

  3. 3.

    Among the mainland Asia tigers, the Amur or Siberian tiger is the most distinct; India, Indochinese and South China tigers are craniometrically distinguishable on average, but with clear overlaps; the Caspian tiger, on the other hand, is indistinguishable from other mainland forms and extensively overlaps with both the Northern and Southern Asia subspecies.

  4. 4.

    Most proportional craniometric differences among tigers observed from this study are mainly allometric; the pattern of craniometric variation in mainland tigers is clearly clinal; craniometric variation and sexual dimorphism are closely related.

  5. 5.

    Skull morphometric characters are quite effective for discriminating major tiger geographical populations, but further analysis using other phenetic craniodental characters (shape of sagittal crest, degree of convexity of the frontal, endocranial volume, detailed carnassial morphology) as well as molecular genetic sources, rather than this purely metric study, would certainly be of considerable value in understanding the evolutionary relationships among mainland Asia tigers and their appropriate taxonomic designations.



Tigers (Panthera tigrisSubspecies Multivariate skull morphometrics Geographic variation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albrecht, G.H., 1980. Multivariate analysis and the study of form, with special reference to canonical variate analysis. Am. Zool. 20, 679–693.CrossRefGoogle Scholar
  2. Albrecht, G.H., Gelvin, B.R., Miller, J.M.A., 2003. The hierarchy of intraspecific craniometric variation in gorillas: a population-thinking approach with implications for fossil species recognition studies. In: Taylor, A.B., Goldsmith, M.L. (Eds.), Gorilla Biology: A Multidisciplinary Perspective. Cambridge University Press, Cambridge.Google Scholar
  3. Brongersma, L.D., 1935. Notes on some recent and fossil cats, chiefly from the Malay Archipelago. Zool. Mededeelingen 18, 1–89.Google Scholar
  4. Christiansen, P., 2007. On the distinctiveness of the Cape lion (Panthera leo melanochaita Smith, 1842), and a possible new specimen from the Zoological Museum, Copenhagen. Mamm. Biol. 72.Google Scholar
  5. Cracraft, J., Feinstein, J., Vaughn, J., Helm-Bychowski, K., 1998. Sorting out tigers (Panthera tigris): mitochondrial sequences, nuclear inserts, systematics and conservation genetics. Anim. Conserv. 1, 139–150.CrossRefGoogle Scholar
  6. Ewer, R.F., 1973. The Carnivores. Cornell University Press, New York.Google Scholar
  7. Goebel, A.M., Whitmore, D.H., 1987. Use of electrophoretic data in the reevaluation of tiger systematics. In: Tilson, R.L., Seal, U.S. (Eds.), Tigers of the World: the Biology, Biopolitics, Management, and Conservation of an Endangered Species. Noyes Publications, Park Ridge, NJ, pp. 36–50.Google Scholar
  8. Groves, C.P., 2002. Primate Taxonomy. Smithsonian Institution Press, Washington.Google Scholar
  9. Groves, C.P., Westwood, C., Shea, B.T., 1992. Unfinished business: Mahalanobis and a clockwork Orang. J. Hum. Evol. 22, 327–340.CrossRefGoogle Scholar
  10. Hemmer, H., 1967. Wohin gehört ‘Felis’ palaeosinensis (Zdansky, 1924) in systematischer Hinsicht? Neues Jahrbuch für Geologie und Paläontologie. Stuttgart. Abhandlungen 129, 83–96.Google Scholar
  11. Hemmer, H., 1969. Zur Stellung des Tigers (Panthera tigris) der Insel Bali. Z. Säugetierkunde 34, 216–223.Google Scholar
  12. Hemmer, H., 1971. Fossil mammals of Java. II. Zur Fossilgeschichte des Tigers (Panthera tigris (L.)) in Java. K. Ned. Akad. Wet. Ser. B 74, 35–52.Google Scholar
  13. Hemmer, H., 1978. Zür intraspezifischen, geographischen variabilitat des Tigers (Panther tigris L.) nebst anmerkungen zu taxonomischen fragen. Congress Report Ist Int. Symp. Management and Breeding of the Tiger. Int. Tiger Studbook. Leipzig Zool. Gart., Leipzig, pp. 60–64.Google Scholar
  14. Hemmer, H., 1987. The phylogeny of the tiger (Panthera tigris). In: Tilson, R.L., Seal, U.S. (Eds.), Tigers of the World: The Biology, Biopolitics, Management, and Conservation of an Endangered Species. Noyes Publications, Park Ridge, NJ, pp. 28–35.Google Scholar
  15. Hendrickson, S.L., Mayer, G.C., Wallen, E.P., Quigley, K., 2000. Genetic variability and geographic structure of three subspecies of tigers (Panthera tigris) based on MHC class I variation. Anim. Conserv. 3, 135–143.CrossRefGoogle Scholar
  16. Herrington, S., 1987. Subspecies and the conservation of Panthera tigris: preserving genetic heterogeneity. In: Tilson, R.L., Seal, U.S. (Eds.), Tigers of the World: the Biology, Biopolitics, Management, and Conservation of an Endangered Species. Noyes Publications, Park Ridge, NJ, pp. 51–61.Google Scholar
  17. Hilzheimer, M., 1905. Über einige Tigerschädel aus der Strassburger zoologischen Sammlung. Zool. Anz. 28, 594–599.Google Scholar
  18. Hooijer, D.A., 1947. Pleistocene remains of Panthera tigris (Linnaeus) subspecies from Wanhsien, Szechuan, China, compared with fossil and recent tigers from other localities. Am. Mus. Novit. 1346, 1–17.Google Scholar
  19. Illiger, C., 1815. Ueberblick der Säugethiere nach ihrer Verbreitung über die Welth. Abh. Königl. Akad. Wiss. Berlin 1804–1811, 90–98.Google Scholar
  20. Jungers, W.L., Falsetti, A.B., Wall, C.E., 1995. Shape, relative size, and size-adjustments in morphometrics. Yearb. Phys. Anthropol. 38, 137–161.CrossRefGoogle Scholar
  21. Kaiser, H.F., 1958. The varimax criterion for analytic rotation in factor analysis. Psychometrika 23, 187–200.CrossRefGoogle Scholar
  22. Kirk, G., 1994. Insel-Tiger Panthera tigris (Linnaeus, 1758). Säugetierkd. Mitt. 35, 151–176.Google Scholar
  23. Kitchener, A.C., 1991. The Natural History of Wild Cats. Cornell University Press, New York.Google Scholar
  24. Kitchener, A.C., 1999. Tiger distribution, phenotypic variation and conservation issues. In: Seidensticker, J., Christie, S., Jackson, P. (Eds.), Riding the Tiger, Tiger conservation in Human-dominated Landscapes. Cambridge University Press, Cambridge, pp. 19–39.Google Scholar
  25. Kitchener, A.C., Dugmore, A.J., 2000. Biogeographical change in the tiger, Panthera tigris. Anim. Conserv. 3, 113–124.CrossRefGoogle Scholar
  26. Kock, D., 1995. Zur Bennenung des Tigers Panthera tigris L. auf Sunda-Inseln. Säugetierkd. Mitt. 36, 123–126.Google Scholar
  27. von Koenigswald, G.H.R., 1933. Beitrag zur Kenntnis der fossilen Wirbeltiere Javas. Wetensch. Mededeel. 23 Bandoeng.Google Scholar
  28. Luo, S.J., Kim, J.H., Johnson, W.E., van der Walt, J., Martenson, J., Yuhki, N., Miquelle, D.G., Uphyrkina, O., Goodrich, J.M., Quigley, H.B., Tilson, R., Brady, G., Martelli, P., Subramaniam, V., Mcdougal, C., Hean, S., Huang, S.Q., Pan, W.S., Karanth, U., Sunquist, M., Smith, J.L.D., O’Brien, S., 2004. Phylogeography and genetic ancestry of tigers (Panthera tigris). PLoS Biol. 2, 2275–2293.Google Scholar
  29. Luo, S.J., Kim, J.H., Johnson, W.E., Miquelle, D.G., Huang, S.Q., Pan, W.S., Smith, J.L., O’Brien, S., 2006. Proceedings in phylogeography and genetic ancestry of tigers (Panthera tigris) in China and across their range. Zool. Res. 27, 441–448.Google Scholar
  30. Mazák, V., 1967. Notes on Siberian long-haired tiger, Panthera tigris altaica (Temminck, 1844), with a remark on Temminck’s mammal volume of the Fauna Japonica. Mammalia 31, 537–573.CrossRefGoogle Scholar
  31. Mazák, V., 1968. Nouvelle sous-espece de tigre provenant de l’Asie due Sud-Est. Mammalia 32, 104–112.Google Scholar
  32. Mazák, V., 1976. On the Bali tiger, Panthera tigris balica (Schwarz, 1912). Vestn. Cesk. Spol. Zool. 40, 179–195.Google Scholar
  33. Mazák, V., 1979. Der Tiger Panthera tigris. 2nd ed., Neue Brehm Bücherei 356. A. Ziemsen Verlag, Wittenberg Lutherstadt.Google Scholar
  34. Mazák, V., 1981. Panthera tigris. Mam. Spec. 152, 1–8.Google Scholar
  35. Mazák, J.H., 2004. On the sexual dimorphism in the skull of the tiger (Panthera tigris). Mamm. Biol. 69, 392–400.CrossRefGoogle Scholar
  36. Mazák, J.H., Groves, C.P., 2006. A taxonomic revision of the tigers (Panthera tigris) of Southeast Asia. Mamm. Boil. 71, 268–287.CrossRefGoogle Scholar
  37. Mazák, V., Groves, C.P., van Bree, P.J.H., 1978. On a skin and skull of the Bali tiger, and a list of preserved specimens of Panthera tigris balica (Schwarz, 1912). Z. Säugetierkd. 43, 108–113.Google Scholar
  38. Meijarrd, E., 2004. Biogeographic history of the Javan leopard Panthera pardus based on a craniometric analysis. J. Mammal. 85, 302–315.CrossRefGoogle Scholar
  39. Miththapala, S., 1992. Genetic and morphological variation in the leopard (Panthera pardus): a geographically widespread species. Ph.D. Thesis, University of Florida, Gainesville.Google Scholar
  40. Newman, A., Bush, M., Wildt, D.E., van Dam, M., Frankehuis, M., Simmons, L., Phillips, L., O’Brien, S.J., 1985. Biochemical genetic variation in eight endangered feline species. J. Mammal. 66, 256–270.CrossRefGoogle Scholar
  41. Nowell, K., Jackson, P., 1996. Wild Cats: Status Survey and Conservation Action Plan. IUCN, Gland, Switzerland.Google Scholar
  42. O’Brien, S.J., Collier, G., Benveniste, R., Nash, W., Newman, A., Simonson, J., Eichelberger, M., Seal, U., Janssen, D., Bush, M., Wildt, D., 1987. Setting the molecular clock in Felidae: the great cats, Panthera. In: Tilson, R.L., Seal, U.S. (Eds.), Tigers of the World: The Biology, Biopolitics, Management, and Conservation of an Endangered Species. Noyes Publications, Park Ridge, NJ, pp. 36–50.Google Scholar
  43. Pocock, R.I., 1929. Tigers. J. Bombay Nat. Hist. Soc. 33, 505–541.Google Scholar
  44. Pocock, R.I., 1939. The Fauna of British India, including Ceylon and Burma. Mammalia, Volume 1, Primates and Carnivora (in part), Families Felidae and Viverridae. Taylor and Francis, London.Google Scholar
  45. Schwarz, E., 1912. Notes on Malay tigers, with description of a new form from Bali. Ann. Mag. Nat. Hist. Ser. 8 (10), 324–326.CrossRefGoogle Scholar
  46. Seidensticker, J., Christie, S., Jackson, P., 1999. Riding the Tiger, Tiger Conservation in Human-dominated Landscapes. Cambridge University Press, Cambridge, 383pp.Google Scholar
  47. Shepherd, C.R., Magnus, N., 2004. Nowhere to hide: the trade in Sumatran tiger. Traffic Southeast Asia, Unit 9-3 A, 3rdGoogle Scholar
  48. Floor, Jalan S523/11 Taman SEA, 47400 Petaling Jaya, Selangor, Malaysia, 108pp.Google Scholar
  49. Sokal, R.R., Rohlf, F.J., 1995. Biometry. W.H. Freeman, New York, 887pp.Google Scholar
  50. Sunquist, M., Sunquist, F., 2002. Wild Cats of the World. University of Chicago Press, Chicago.CrossRefGoogle Scholar
  51. Temminck, C.J., 1844. Aperçu général et spécifique sur les Mammifères qui habitent le Japon et les Iles qui en dependent. In: Fauna Japonica (Mammifères). Lugduni Batavorum, 60pp.Google Scholar
  52. Tilson, R., Defu, H., Muntifering, J., Nyhus, P.J., 2004. Dramatic decline of wild south China tigers Panthera tigris amoyensis: field survey of priority tiger reserves. Oryx 38, 40–47.CrossRefGoogle Scholar
  53. Thomas, O., 1911. The mammals of the Tenth Edition of Linnaeus; an attempt of fix the types of the genera and the exact bases and localities of the species. Proc. Zool. Soc. London 1911, 120–158.Google Scholar
  54. Uphyrkina, O., Johnson, W.E., Quigley, H., Miquelle, D., Marker, I., et al., 2001. Phylogenetics, genome diversity and origin of modern leopard, Panthera pardus. Mol. Ecol. 10, 2617–2633.PubMedCrossRefGoogle Scholar
  55. Wayne, R.K., Benveniste, R.E., Janczewski, N., O’Brien, S.J., 1989. Molecular and biochemical evolution of the Carnivora. In: Gittleman, J.L. (Ed.), Carnivore Behavior, Ecology and Evolution. Comstock Publishing Associates, Cornell University Press, Ithaca, New York, pp. 465–494.CrossRefGoogle Scholar
  56. Wentzel, J., Stephens, J.C., Johnson, W., Menotti-Raymond, M., Pecon-Slattery, J., Yuhki, N., Carrington, M., Quigley, H.B., Miquelle, D.G., Tilson, R., Manansang, J., Brady, G., Lu, Z., Pan, W.S., Huang, S.Q., Johnston, L., Sunquist, M., Karanth, K.U., O’Brien, S., 1999. Subspecies of tigers: molecular assessment using ‘voucher specimens’ of geographically traceable individuals. In: Seidensticker, J., Christie, S., Jackson, P. (Eds.), Riding the Tiger, Tiger conservation in Human-dominated Landscapes. Cambridge University Press, Cambridge, pp. 40–49.Google Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2008

Authors and Affiliations

  1. 1.Shanghai Science and Technology Museum (formerly Shanghai Museum of Natural History)ShanghaiPR China

Personalised recommendations