Mammalian Biology

, Volume 74, Issue 1, pp 36–48 | Cite as

Reliability of δ13C and δ15N in faeces for reconstructing savanna herbivore diet

  • Daryl CodronEmail author
  • Jacqui Codron
Original Investigation


We tested the reliability of herbivore faecal δ13C and δ15N values for reconstructing diet through review of an extensive database derived from a 3-year study of ungulates in South Africa’s Kruger National Park. Faeces are a useful material for stable isotope studies of diet because they record dietary turnover at very short time scales, and because sampling is non-invasive. However, the validity of faecal isotope proxies may be questioned because they represent only undigested food remains. Results from Kruger Park confirm that free-ranging browsers have faecal δ13C consistent with C3 feeding, grazer faeces are C4, and mixed-feeder faeces intermediate. Although the respective ranges do not overlap, there is significant variation in faecal δ13C of browsers and grazers (∼2.0–4.0%o) across space and through time. We demonstrate that most (∼70%) of this variation can be ascribed to corresponding patterns of variation in the δ13C of C3 and C4 plants, respectively, re-enforcing the fidelity of faecal isotope proxies for diet but highlighting a need for mixing models that control for variations in plant δ13C in order to achieve accurate diet reconstructions. Predictions for the effects of climate (rainfall) and ecophysiology on15N-abundance variations in mammals do not persist in faeces. Rather, faecal δ15N tracks changes in plant δ15N, with further fractionation occurring primarily due to variations in dietary protein (reflected by %N). Controlling for these effects, we show that a dual-isotope multiple source mixing model (Isosource) can extend diet reconstructions for African savanna herbivores beyond simplified C3/C4 distinctions, although further understanding of variations in mammal δ15N are needed for greater confidence in this approach.


Browser Grazer Kruger Park Mixed feeder Mixing model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akaike, H.M. 1983. Information measures and model selection. Bulletin of the International Statistical Institute; Proceedings of the 44th Session 1, 277–290.Google Scholar
  2. Ambrose, S.H. 1991. Effects of diet, climate and physiology on nitrogen isotope abundances in terrestrial foodwebs. J. Archaeol. Sci. 18, 293–317.CrossRefGoogle Scholar
  3. Ayliffe, L.K., Cerling, T.E., Robinson, T., West, A.G., Sponheimer, M., Passey, B.H., Hammer, J., Roeder, B., Dearing, M.D., Ehleringer, J.R. 2004. Turnover of carbon isotopes in tail hair and breath CO2 of horses fed an isotopically varied diet. Oecologia 139, 11–21.PubMedCrossRefGoogle Scholar
  4. Botha, M.S., Stock, W.D. 2005. Stable isotope composition of faeces as an indicator of seasonal diet selection in wild herbivores in southern Africa. S. Afr. J. Sci. 101, 371–374.Google Scholar
  5. Burnham, K.P., Anderson, D.R. 2002. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer, New York.Google Scholar
  6. Cerling, T.E., Harris, J.M. 1999. Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studies. Oecologia 120, 347–363.PubMedCrossRefGoogle Scholar
  7. Cerling, T.E., Harris, J.M., Passey, B.H. 2003. Diets of East African Bovidae based on stable isotope analysis. J. Mammal. 84, 456–470.CrossRefGoogle Scholar
  8. Cerling, T.E., Wittemyer, G., Rasmussen, H.B., Vollrath, F., Cerling, C.E., Robinson, T., Douglas-Hamilton, I. 2006. Stable isotopes in elephant hair document migration patterns and diet changes. Proc. Natl. Acad. Sci. USA 103, 371–373.PubMedCrossRefGoogle Scholar
  9. Coates, D.B., van der Weide, A.P.A., Kerr, J.D. 1991. Changes in faecal δ13C in response to changing proportions of legume (C3) and grass (C4) in the diet of sheep and cattle. J. Agric. Sci. 116, 287–295.CrossRefGoogle Scholar
  10. Codron, D., Codron, J., Sponheimer, M., Lee-Thorp, J.A., Robinson, T., Grant, C.C., de Ruiter, D. 2005a. Assessing diet in savanna herbivores using stable carbon isotope ratios of faeces. Koedoe 48, 115–124.CrossRefGoogle Scholar
  11. Codron, J., Codron, D., Lee-Thorp, J.A., Sponheimer, M., Bond, W.J., de Ruiter, D., Grant, R. 2005b. Taxonomic, anatomical, and spatio-temporal variations in the stable carbon and nitrogen isotopic compositions of plants from an African savanna. J. Archaeol. Sci. 32, 1757–1772.CrossRefGoogle Scholar
  12. Codron, J., Lee-Thorp, J.A., Sponheimer, M., Grant, C.C., Codron, D., de Ruiter, D. 2006. Elephant (Loxodonta africana) diets in the Kruger National Park, South Africa: spatial and landscape differences. J. Mammal. 87, 27–34.CrossRefGoogle Scholar
  13. Codron, D., Codron, J., Lee-Thorp, J.A., Sponheimer, M., de Ruiter, D., Sealy, J., Grant, R., Fourie, N. 2007a. Diets of savanna ungulates from stable carbon isotope composition of faeces. J. Zool. 273, 21–29.CrossRefGoogle Scholar
  14. Codron, D., Lee-Thorp, J.A., Sponheimer, M., Codron, J., de Ruiter, D., Brink, J.S. 2007b. Significance of diet type and diet quality for ecological diversity of African ungulates. J. Anim. Ecol. 76, 526–537.PubMedCrossRefGoogle Scholar
  15. Codron, D., Lee-Thorp, J.A., Sponheimer, M., Codron, J. 2007c. Stable carbon isotope reconstruction of ungulate diet changes through the seasonal cycle. S. Afr. J. Wildl. Res. 37, 117–125.CrossRefGoogle Scholar
  16. du Toit, J.T. 1993. The feeding ecology of a very small ruminant, the steenbok (Raphicerus campestris). Afr. J. Ecol. 31, 35–48.CrossRefGoogle Scholar
  17. du Toit, J.T. 2003. Large herbivores and savanna heterogeneity. In: du Toit, J.T., Rogers, K.H., Biggs, C.H. (Eds.), The Kruger Experience. Island Press, Washington, DC, pp. 292–309.Google Scholar
  18. Gagnon, M., Chew, A.E. 2000. Dietary preferences in extant African Bovidae. J. Mammal. 81, 490–511.CrossRefGoogle Scholar
  19. Hall-Martin, A.J. 1974. Food selection by Transvaal lowveld giraffe as determined by analysis of stomach contents. J. S. Afr. Wildl. Man. Assoc. 4, 191–202.Google Scholar
  20. Heaton, T.H.E., Vogel, J.C., von la Chevallerie, G., Collett, G. 1986. Climatic influence on the isotopic composition of bone nitrogen. Nature 322, 823–824.CrossRefGoogle Scholar
  21. Hofmann, R.R., Stewart, D.R.M. 1972. Grazer or browser: a classification based on the stomach structure and feeding habits of East African ruminants. Mammalia 36, 226–240.CrossRefGoogle Scholar
  22. Holecheck, J.L., Vavre, M., Pieper, R.D. 1982. Methods for determining the nutritive quality of range ruminant diets: a review. J. Anim. Sci. 54, 363–376.CrossRefGoogle Scholar
  23. Janis, C.M. 1976. The evolutionary strategy of the Equidae and the origins of rumen and cecal digestion. Evolution 30, 757–774.PubMedCrossRefGoogle Scholar
  24. Lee-Thorp, J.A., van der Merwe, N.J. 1987. Carbon isotope analysis of fossil bone apatite. S. Afr. J. Sci. 83, 712–715.Google Scholar
  25. Owen-Smith, R.N. 1988. Megaherbivores — The Influence of Very Large Body Size on Ecology. Cambridge University Press, Cambridge, MA.CrossRefGoogle Scholar
  26. Owen-Smith, N. 1997. Distinctive features of the nutritional ecology of browsing versus grazing ruminants. Mammal. Biol. 62, 176–191.Google Scholar
  27. Owen-Smith, N., Cooper, S.M. 1989. Nutritional ecology of a browsing ruminant, the kudu (Tragelaphus strepsiceros), through the seasonal cycle. J. Zool. 219, 29–43.CrossRefGoogle Scholar
  28. Peterson, B.J., Fry, B. 1987. Stable isotopes in ecosystem studies. Annu. Rev. Ecol. Syst. 18, 293–320.CrossRefGoogle Scholar
  29. Phillips, D.L., Gregg, J.W. 2003. Source partitioning using stable isotopes: coping with too many sources. Oecologia 136, 261–269.CrossRefGoogle Scholar
  30. Robbins, C.T., Hanley, T.A., Hagerman, A.E., Hjejord, O., Baker, D.L., Schwartz, C.C., Mautz, W.W. 1987. Role of tannins in defending plants against ruminants: reduction in protein availability. Ecology 68, 98–107.CrossRefGoogle Scholar
  31. Robbins, C.T., Felicetti, L.A., Sponheimer, M. 2005. The effect of dietary protein quality on nitrogen isotope discrimination in mammals and birds. Oecologia 144, 534–540.PubMedCrossRefGoogle Scholar
  32. Sage, R.F., Li, M., Monson, R.K. 1999. The taxonomic distribution of C4 photosynthesis. In: Sage, R.F., Monson, R.K. (Eds.), C4 Plant Biology. Academic Press, San Diego, pp. 551–584.CrossRefGoogle Scholar
  33. Sealy, J.C., van der Merwe, N.J., Lee-Thorp, J.A., Lanham, J.L. 1987. Nitrogen isotopic ecology in southern Africa: implications for environmental and dietary tracing. Geochim. Cosmochim. Acta 51, 2707–2717.CrossRefGoogle Scholar
  34. Skinner, J.D., Smithers, R.H.N. 1990. The Mammals of the Southern African Subregion, second ed. University of Pretoria, Pretoria.Google Scholar
  35. Sponheimer, M., Robinson, T., Ayliffe, L., Roeder, B., Hammer, J., Passey, B., West, A., Cerling, T., Dearing, D., Ehleringer, J. 2003a. Nitrogen isotopes in mammalian herbivores: hair δ15N values from a controlled-feeding study. Int. J. Osteoarchaeol. 13, 80–87.CrossRefGoogle Scholar
  36. Sponheimer, M., Robinson, T., Ayliffe, L., Passey, B., Roeder, B., Shipley, L., Lopez, E., Cerling, T., Dearing, D., Ehleringer, J. 2003b. An experimental study of carbonisotope fractionation between diet, hair, and faeces of mammalian herbivores. Can. J. Zool. 81, 871–876.CrossRefGoogle Scholar
  37. Sponheimer, M., Robinson, T.F., Roeder, B.L., Passey, B.H., Ayliffe, L.K., Cerling, T.E., Dearing, M.D., Ehleringer, J.R. 2003c. An experimental study of nitrogen flux in llamas: is14N preferentially excreted? J. Archaeol. Sci. 30, 1649–1655.CrossRefGoogle Scholar
  38. Sponheimer, M., Lee-Thorp, J.A., de Ruiter, D.J., Smith, J.M., van der Merwe, N.J., Reed, K., Grant, C.C., Ayliffe, L.K., Robinson, T.F., Heidelberger, C., Marcus, W. 2003d. Diets of southern African Bovidae: stable isotope evidence. J. Mammal. 84, 471–479.CrossRefGoogle Scholar
  39. Sponheimer, M., Cerling, T.E., Robinson, T.F., Tegland, L., Roeder, B.L., Ayliffe, L., Dearing, M.D., Ehleringer, J.R. 2006. Turnover of stable carbon isotopes in the muscle, liver and breath CO2 of alpacas (Lama pacos). Rapid. Commun. Mass Spectrom. 20, 1–5.CrossRefGoogle Scholar
  40. Steele, K.W., Daniel, R.M.J. 1978. Fractionation of nitrogen isotopes by animals: a further complication to the use of variations in the natural abundance of15N for tracer studies. J. Agric. Sci. 90, 7–9.CrossRefGoogle Scholar
  41. Stock, W.D., Chuba, D.K., Verboom, G.A. 2004. Distribution of South African C3 and C4 species of Cyperaceae in relation to climate and phylogeny. Austr. Ecol. 29, 313–319.CrossRefGoogle Scholar
  42. Sutoh, M., Koyama, T., Yoneyama, T. 1987. Variations of natural15N abundances in the tissues and digesta of domestic animals. Radioisotopes 36, 74–77.PubMedCrossRefGoogle Scholar
  43. Tieszen, L., Hein, D., Qvortrup, D., Troughton, J., Imbamba, S. 1979. Use of δ13C values to determine vegetation selectivity in east African herbivores. Oecologia 37, 351–359.PubMedCrossRefGoogle Scholar
  44. Treydte, A.C., Bernasconi, S.M., Kreuzer, M., Edwards, P.J. 2006. Diet of the common warthog (Phacochoerus africanus) on former cattle grounds in a Tanzanian savanna. J. Mammal. 87, 889–898.CrossRefGoogle Scholar
  45. Van Soest, P.J. 1994. Nutritional Ecology of the Ruminant, second ed. Comstock, Ithaca, NY.Google Scholar
  46. Vogel, J.C. 1978. Isotopic assessment of the dietary habits of ungulates. S. Afr. J. Sci. 74, 298–301.Google Scholar
  47. Wilson, J.R., Hattersley, P.W. 1989. Anatomical characters and digestibility of leaves of Panicum and other grass genera with C3 and different types of C4 photosynthetic pathway. Austr. J. Agric. Res. 40, 125–136.CrossRefGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2008

Authors and Affiliations

  1. 1.School of Biological and Conservation SciencesUniversity of KwaZulu-NatalScottsville, PietermaritzburgSouth Africa
  2. 2.Department of ArchaeologyUniversity of Cape TownCape TownSouth Africa
  3. 3.Florisbad Quaternary ResearchNational MuseumBloemfonteinSouth Africa

Personalised recommendations