Advertisement

Mammalian Biology

, Volume 73, Issue 1, pp 48–57 | Cite as

Habitat use by black bears in relation to conspecifics and competitors

  • Danielle E. GarneauEmail author
  • Toby Boudreau
  • Mark Keech
  • Eric Post
Article

Abstract

Sympatric black bears (Ursus americanus) and brown bears (Ursus arctos) are common in many boreal systems; however, few predator assemblages are known to coexist on a single seasonally abundant large prey item. In lowland southwestern interior Alaska, black bears and brown bears are considered the primary cause of moose (Alces alces) calf mortality during the first 6 weeks of life. The objective of this study was to document habitat use of global-positioning system (GPS)-collared black bears during peak and non-peak seasons of black bear-induced and brown bear-induced moose calf mortality within southwestern interior Alaska, in spring 2002. We compared habitats of GPS-collared black bears to those of presumably uncollared black bears and brown bears at their moose calf mortality sites. Results from this study suggest that GPS-collared black bears use similar habitat as conspecifics more than expected during the peak period of black bear predation on moose calves, whereas they use habitat in proportion to home range availability during the peak in brown bear predation on moose calves. Sex-specific Ivlev’s electivity indices describe greater than expected use of mixed-deciduous forest and needleleaf forest by male GPS-collared black bears during the peak of moose calf predation, whereas females have a tendency to use these habitats less than expected. Juvenile GPS-collared black bears largely use the same habitat as other sympatric predators during the peak of moose calf predation, whereas during the non-peak period juveniles use opposite habitats as adult GPS-collared black bears. The outcome of this study offers possible explanations (e.g., sex, age) for spatial overlap or segregation in one member of a complex predator guild in relation to a seasonal pulse of preferred prey.

Keywords

Ursus americanus Ursus arctos Alces alces Habitat preference 

Der Einfluss von Artgenossen und Konkurrenten auf die Habitatnutzung von Schwarzbären

Zusammenfassung

Amerikanische Schwarzbären (Ursus americanus) und Braunbären (Ursus arctos) kommen häufig gemeinsam in vielen borealen Lebensräumen vor. Dieses System gehört zu den wenigen bekannten Raubtiergemeinschaften, die trotz der Nutzung einer einzelnen grossen und saisonal häufigen Beuteart im selben Habitat koexistieren können. Im südwestlichen Tiefland von Zentral-Alaska wird Prädation durch Schwarzbären und Braunbären als die wichtigste Ursache für die Mortalität von Elchkälbern (Alces alces) während der ersten sechs Lebenswochen angesehen. In dieser Studie untersuchten wir die Habitatnutzung von mit GPS-Halsbändern markierten Schwarzbären zu Zeiten hoher und niedriger Elchkalbsmortalität durch Schwarz- und Braunbären im südwestlichen Tiefland von Zentral-Alaska im Frühling 2002. Wir verglichen die Habitatnutzung von Schwarzbären mit GPS-Empfänger mit den Habitaten von Schwarz- und Braunbären ohne GPS-Empfänger in Bereichen, in denen wir von vermutlich unmarkierten Bären gerissene Elchkälber fanden. Diese Studie zeigt, dass während der Hauptzeit der Elchkalbprädation durch Schwarzbären Bären mit GPS-Empfänger und ihre Artgenossen häufiger ähnliche Habitate benutzen als erwartet. Während der Hauptzeit der Elchkalbprädation durch Braunbären steht die Habitatnutzung von Schwarzbären mit GPS-Empfänger allerdings im Verhältnis zur Verfügbarkeit von Schwarzbärrevieren. Geschlechtsspezifische Ivlevs-Wahlindices zeigen eine höhere als erwartete Nutzung von Laub- und Nadelwald durch männliche Schwarzbären mit GPS-Empfänger während der Hauptzeit der Elchkalbprädation durch Schwarzbären. Weibliche Schwarzbären tendieren jedoch daz, udiese Habitate weniger als erwartet zu nutzen. Juvenile Schwarzbären mit GPS-Empfänger benutzen überwiegend dieselben Lebensräume wie andere sympatrische Räuber während der Hauptzeit der Elchkalbprädation. Außerhalb der Hauptjagdzeit nutzen junge Schwarzbären jedoch andere Lebensräume als erwachsene Individuen mit GPS-Empfänger. Diese Studie bietet mögliche Erklärungen (z.B. Geschlecht oder Alter) für das räumliche Überlappen oder die räumliche Trennung eines Mitglieds einer komplexen Raubtiergilde als Antwort auf einen saisonalen Schub in der Häufigkeit einer bevorzugten Beuteart.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alt, G.L., Matula, G.J.J., Alt, F.W., Lindzey, J.S., 1977. Dynamics of home range and movements of adult black bears in northeastern Pennsylvania. Int. Conf. Bear Res. Manage. 4, 131–136.Google Scholar
  2. Atwell, G., Boone, D.L., Gustafson, K.A., Berns, V.D., 1977. Brown bear summer use of alpine habitat on the Kodiak National Wildlife Refuge. Int. Conf. Bear Res. Manage. 4, 297–305.Google Scholar
  3. Ballard, W.B., Miller, S.D., Whitman, J.S., 1990. Brown and black bear predation on moose in southcentral Alaska. Alces 26, 1–8.Google Scholar
  4. Barnes Jr., V.B., 1989. The influence of salmon on availability of movements and range of brown bears on southwest Kodiak Island. Int. Conf. Bear Res. Manage. 8, 305–313.Google Scholar
  5. Bergerud, A.T., Page, R.E., 1987. Displacement and dispersion of parturient caribou at calving as antipredator tactics. Can. J. Zool. 65, 1597–1606.CrossRefGoogle Scholar
  6. Cade, B.S., Richards, J., 1999. User Manual for Blossom Statistical Software. USGS, Fort Collins, CO, USA.Google Scholar
  7. Calow, P., Editor-in-Chief, 1998. The Encyclopedia of Ecology and Environmental Management. Blackwell Science, Malden, MA.Google Scholar
  8. Caravalho, J.C., Gomes, P., 2004. Feeding resource partitioning among four sympatric carnivores in the Peneda-Geres National Park (Portugal). J. Zool. (London) 263, 275–283.CrossRefGoogle Scholar
  9. Dahle, B., Swenson, J., 2003. Seasonal home range size in relation to reproductive strategies in brown bears Ursus arctos. J. Anim. Ecol. 72, 660–667.PubMedCrossRefGoogle Scholar
  10. Durant, S.M., 1998. Competition refuges and coexistence: an example from Serengeti carnivores. J. Anim. Ecol. 67, 370–386.CrossRefGoogle Scholar
  11. Durant, S.M., 2000. Living with the enemy: avoidance of hyenas and lions by cheetahs in the Serengeti. Behav. Ecol. 11, 624–632.CrossRefGoogle Scholar
  12. Eagle, T.C., Pelton, M.R., 1983. Seasonal nutrition of black bears in the Great Smoky Mountains National Park. Int. Conf. Bear Res. Manage. 5, 94–101.Google Scholar
  13. Garneau, D.E., 2005. Spatio-temporal dynamics of a multiple-predator single-prey system. Ph.D. Thesis, The Pennsylvania State University, Pennsylvania, USA.Google Scholar
  14. Garshelis, D.L., Pelton, M.R., 1980. Activity of black bears in the Great Smoky Mountains National Park. J. Mammal. 61, 8–19.CrossRefGoogle Scholar
  15. Garshelis, D.L., Pelton, M.R., 1981. Movements of black bears in the Great Smoky Mountains National Park. J. Wildl. Manage. 45, 912–925.CrossRefGoogle Scholar
  16. Garshelis, D.L., Quigley, H.B., Villarrubia, C.R., Pelton, M.R., 1983. Diel movements of black bears in the southern Appalachians. Int. Conf. Bear Res. Manage. 5, 11–19.Google Scholar
  17. Haroldson, M.A., Ternent, M.A., Gunther, K.A., Schwartz, C.C., 2002. Grizzly bear denning chronology and movements in the Greater Yellowstone ecosystem. Ursus 13, 29–37.Google Scholar
  18. Hatler, D.F., 1972. Food habits of black bears in interior Alaska. Can. Field-Nat. 86, 17–31.Google Scholar
  19. Herrero, S., 1978. A comparison of some features of the evolution, ecology and behavior of black and grizzly/brown bears. Carnivore 1, 7–17.Google Scholar
  20. Hobson, K.A., McLellan, B.N., Woods, J.G., 2000. Using stable carbon 13C and Nitrogen 15N to infer trophic relationships among black and grizzly bears in the upper Columbia River basin, British Columbia. Can. J. Zool. 78, 1332–1339.CrossRefGoogle Scholar
  21. Jacoby, M.E., Hilderbrand, G.V., Servheen, C., Schwartz, C.C., Arthur, S.M., Hanley, T.A., Robbins, C.T., Michener, R., 1999. Trophic relations of brown and black bears in several western north american ecosystems. J. Wildl. Manage. 63, 921–929.CrossRefGoogle Scholar
  22. James, A.R.C, Botin, S., Hebert, D.M., Rippin, A.B., 2004. Spatial Separation of caribou from moose and its relation to predation by wolves. J. Wildl. Manage. 68, 799–808.CrossRefGoogle Scholar
  23. Kernohan, B.J., Gitzen, R.A., Millspaugh, J.J., 2001. Analysis of animal space use and movements. In: Millspaugh, J.J., Marzluff, J.M. (Eds.), Radio Tracking and Animal Populations. Academic Press, San Diego, CA, pp. 126–164.Google Scholar
  24. Koehler, G.M., Hornocker, M.G., 1991. Seasonal resource use among mountain lions, bobcats, and coyotes. J. Mammal. 72, 391–396.CrossRefGoogle Scholar
  25. Kolenosky, G.B., Strathearn, S.M., 1987. Winter denning of black bears in east-central Ontario. Int. Conf. Bear Res. Manage. 7, 305–316.Google Scholar
  26. Krebs, C.J., 1989. Ecological Methodology. Harper and Row, New York.Google Scholar
  27. Larsen, B.T., Gauthier, D.A., Markel, R.L., 1989. Cause and rate of moose mortality in the southwest Yukon. J. Wildl. Manage. 53, 548–557.CrossRefGoogle Scholar
  28. Lechowicz, M.J., 1982. The sampling characteristics of electivity indices. Oecologia 52, 22–30.PubMedCrossRefGoogle Scholar
  29. Manley, B.F.J., McDonald, L.L., Thomas, D.L., McDonald, T.L., Erikson, W.P., 2002. Resource Selection by Animals, second ed. Kluwer Academic Publishers, Norwell, MA.Google Scholar
  30. Miller, S.D., 1990. Denning ecology of brown bears in southcentral Alaska and comparisons with a sympatric black bear population. Int. Conf. Bear Res. Manage. 8, 279–287.Google Scholar
  31. Mills, M.G.L., Broomhall, L.S., du Toit, J.T., 2004. Cheetah acinonyx jubatus feeding ecology in the Kruger National Park and a comparison across African hunting savanna habitats: is the cheetah only a successful hunter on open grassland plains? Wildl. Biol. 10, 177–186.CrossRefGoogle Scholar
  32. Mykytka, J.M., Pelton, M.R., 1989. Management strategies for Florida black bears based on home range habitat composition. Int. Conf. Bear Res. Manage. 8, 161–167.Google Scholar
  33. Pelchat, B.O., Ruff, R.L., 1986. Habitat and spatial relationships of black bears in boreal mixedwood forest of Alberta. Int. Conf. Bear Res. Manage. 6, 81–92.Google Scholar
  34. Reynolds, D.G., Beecham, J.J., 1977. Home range activities and reproduction of black bears in west-central Idaho. Int. Conf. Bear Res. Manage. 4, 181–190.Google Scholar
  35. Samson, C., Huot, J., 2001. Spatial and temporal interactions between female American black bears in mixed forests of eastern Canada. Can. J. Zool. 79, 633–641.CrossRefGoogle Scholar
  36. Schoener, T.W., 1982. The controversy over interspecific competition. Am. Scientist 70, 586–595.Google Scholar
  37. Schwartz, C.C., Miller, S.D., Franzmann, A.W., 1986. Denning ecology of three black bear populations in Alaska. Int. Conf. Bear Res. Manage. 7, 281–291.Google Scholar
  38. Theberge, J.B., Wedeies, C.H.R., 1989. Prey selection and habitat partitioning in sympatric coyote and red fox populations, southwest Yukon. Can. J. Zool. 67, 1285–1290.CrossRefGoogle Scholar
  39. Wilton, M.L., 1983. Black bear predation on young cervids—a summary. Alces 19, 136–148.Google Scholar
  40. Wilton, M.L., Carlson, D.M., McCall, C.I., 1984. Occurence of neonatal cervids in the spring diet of black bear in south central Ontario. Alces 20, 95–105.Google Scholar
  41. Young, D.D., Beecham, J.J., 1983. Black bear habitat use at Priest Lake, Idaho. Int. Conf. Bear Res. Manage. 6, 73–80.Google Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2007

Authors and Affiliations

  • Danielle E. Garneau
    • 1
    Email author
  • Toby Boudreau
    • 2
  • Mark Keech
    • 3
  • Eric Post
    • 4
  1. 1.Department of BiologyColby CollegeWatervilleUSA
  2. 2.Regional Wildlife BiologistIdaho Department of Fish and GamePocatelloUSA
  3. 3.Wildlife Biologist IIIAlaska Department of Fish and GameFairbanksUSA
  4. 4.Department of BiologyThe Pennsylvania State University, Mueller LaboratoryUniversity ParkUSA

Personalised recommendations