Mammalian Biology

, Volume 72, Issue 3, pp 129–144 | Cite as

Growth of horseshoe bats (Chiroptera: Rhinolophidae) in temperate continental conditions and the influence of climate

  • C. DietzEmail author
  • Isabel Dietz
  • B. M. Siemers
Original investigation


Growth characteristics of three species of horseshoe bats (Rhinolophus ferrumequinum, R. euryale and R. mehelyi) were studied in northern Bulgaria, and measurements of cohorts born there in different years were compared interannually. Bulgarian horseshoe bats are usually born in the first 3 weeks of June and start to leave the roost at an age of about 3 weeks. Young horseshoe bats of all three species had attained more than 95% of the adult dimensions at the time when they started to regularly leave the cave to forage on their own in mid of July. Individually marked juvenile R. ferrumequinum reached adult dimensions in most external wing measurements in the first half of August. Accordingly the pooled measurements of all juveniles did not differ anymore from those of adult bats in the second half of August. The same pattern was found in R. mehelyi and R. euryale. We found a clear relationship between the climatic conditions prevailing in each year and the final size of individuals born respectively in those years. Whereas previous studies have addressed climatic effects only on several bat species along their northern limits of distribution, these data provide the first evidence for an influence of climate on the growth of individuals in the centre of the species’ distributions.

Key words

Rhinolophus ferrumequinum R. euryale R. mehelyi growth climate 

Wachstum von Hufeisennasen-Fledermäusen (Chiroptera: Rhinolophidae) unter temperatkontinentalen Bedingungen und der Einfluss des Klimas


Wir untersuchten das Wachstum dreier Arten von Hufeisennasen-Fledermäusen (Rhinolophus ferrumequinum, R. euryale und R. mehelyi) in Bulgarien und verglichen Messwerte verschiedener Geburtsjahrgänge. Bulgarische Hufeisennasen-Fledermäuse werden in der Regel in den ersten drei Juni-Wochen geboren und verlassen das Quartier erstmals in einem Alter von etwa drei Wochen. Mit dem Beginn des selbstständigen Beuteerwerbs ab Ende Juli erreichen die Jungtiere aller drei Arten bereits mehr als 95% der adulten FlügelmaXe in vier MeXstrecken. Individuell markierte Jungtiere der Großen Hufeisennase (R. ferrumequinum) erreichten in den meisten Flügelmaßen Adultdimen-sionen in der zweiten Augusthälfte. Entsprechend wichen dann auch die gemittelten Maße aller Jungtiere ab Ende August nicht mehr von denen adulter Tiere ab. Ein vergleichbares Muster wurde auch bei R. mehelyi und R. euryale gefunden.

Wir konnten weiterhin eindeutige Größenunterschiede zwischen verschiedenen Geburtsjahrgängen nachweisen, die mit Klimabedingungen während der Wachstumsphase in Zusammenhang zu bringen sind. Anhand dieser Daten kann erstmals ein Einfluss des Klimas auf das Wachstum von Individuen im Zentrum ihres Verbreitungsgebietes gezeigt werden. Bisherige Untersuchungen konnten solch einen Einfluss lediglich auf Population an den nördlichen Verbreitungsgrenzen der Arten nachweisen.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, R. A. (1996): Size-specific resource use in juvenile little brown bats, Myotis lucifugus (Chiroptera: Vespertilionidae): is there an ontogenetic shift? Can. J. Zool. 74, 1204–1210.CrossRefGoogle Scholar
  2. Arlettaz, R.; Christe, P.; Lugon, A.; Perrin, N.; Vogel, P. (2001): Food availability dictates the timing of parturition in insectivorous mouse-eared bats. Oikos 95, 105–111.CrossRefGoogle Scholar
  3. Barclay, R. M. R. (1995): Does energy or calcium availability constrain reproduction by bats? Symp. Zool. Soc. London 67, 245–258.Google Scholar
  4. Barclay, R.M.R.; Harder, L.D. (2003): Life histories of bats: life in the slow lane. In: Bat Ecology. Ed. by T.H. Kunz and M.B. Fenton. Chicago: University of Chicago Press. Pp. 209–253.Google Scholar
  5. Bennett, R. P. (1999): Effects of food quality on growth and survival of juvenile Columbian ground squirrels (Spermophilus columbianus). Can. J. Zool. 77, 1555–1561.CrossRefGoogle Scholar
  6. Boyce, M. S. (1979): Seasonality and patterns of natural selection for life histories. Am. Nat. 114, 569–583.CrossRefGoogle Scholar
  7. Burnett, C. D.; Kunz, T. H. (1982): Growth rates and age-estimation in Eptesicus fuscus and comparison with Myotis lucifugus. J. Mammalogy 63, 33–41.CrossRefGoogle Scholar
  8. Case, T. J. (1978): On the evolution and adaptive significance of postnatal growth rates in the terrestrial vertebrates. Q. Rev. Biol. 53, 243–282.PubMedCrossRefGoogle Scholar
  9. de Paz, O. (1986): Age estimation and postnatal growth of the greater mouse-eared bat Myotis myotis in Guadalajara, Spain. Mammalia 50, 243–251.Google Scholar
  10. Dietz, C.; von Helversen, O. (2004): Identification Key to the Bats of Europe. 72pp. Electronical publication, version 1.0. Available at ( Scholar
  11. Dietz, C.; Dietz, I.; Siemers, B. M. (2006a): Wing measurement variations in the five European horseshoe bat species (Chiroptera: Rhinolophidae). J Mammalogy 87 (in press).CrossRefGoogle Scholar
  12. Dietz, C.; Dietz, I.; Ivanova, T.; Siemers, B. M. (2006b): Movements of horseshoe bats (Rhinolophus, Chiroptera: Rhinolophidae) in Northern Bulgaria. Myotis (in press).Google Scholar
  13. Dietz, C.; Dietz, I.; Ivanova, T.; Siemers, B. M. (2006c): Effects of forearm bands on horseshoe bats (Chiroptera: Rhinolophidae). Acta Chiropterologica (in press).CrossRefGoogle Scholar
  14. Dimitrov, D. (1966): Klimatična podjalba v Bălgarija, Geografija na Bălgarija 1, Fizičeska geografija. Sofia: Bulgarian Academy of Sciences.Google Scholar
  15. Findley, J. S.; Studier, E. H.; Wilson, D. E. (1972): Morphological properties of bat wings. J. Mammalogy 53, 429–444.CrossRefGoogle Scholar
  16. Forsyth, D. J. (1976): A field study of growth and development of nestling masked shrews (Sorex cinereus). J. Mammalogy 57, 708–721.CrossRefGoogle Scholar
  17. Gaisler, J. (1960): Postnatale Entwicklung der Kleinen Hufeisennase (Rhinolophus hipposideros) unter natürlichen Bedingungen. Symp. Theriol. 1960, 118–125.Google Scholar
  18. Gaisler, J. (1965): The female sexual cycle and reproduction in the lesser horseshoe bat (Rhinolophus hipposideros hipposideros). Vestn. Cesk. Spol. Zool. 29, 336–352.Google Scholar
  19. Gaisler, J.; Titlbach, M. (1964): The male sexual cycle in the lesser horseshoe bat (Rhinolophus hipposideros hipposideros). Vestn. Cesk. Spol. Zool. 28, 268–277.Google Scholar
  20. Galabov, S. (1953): Mjastoto na geomorphologiijata v krăga na geologo-geografskite nauki. Proc. Bulg. Geograph. Soc. 1, 1–273.Google Scholar
  21. Grunewald, K.; Stoilov, D. (1998): Natur- und Kulturlandschaften Bulgariens. Bulgarische Bibliothek (N.F.) 3, 1–179.Google Scholar
  22. Henry, C. J. K.; Ulijaszek, S. J. (1996): Long-term consequences of early environment. Cambridge: University press.Google Scholar
  23. Hood, W. R.; Bloss, J.; Kunz, T. H. (2002): Intrinsic and extrinsic sources of variation in size at birth and rates of postnatal growth in the big brown bat Eptesicus fuscus (Chiroptera: Vespertilionidae). J. Zool. (London) 258, 355–363.CrossRefGoogle Scholar
  24. Hoying, K. M.; Kunz, T. H. (1998): Variation in size at birth and post-natal growth in the insectivorous bat Pipistrellus subflavus. J. Zool. (London) 245, 15–27.CrossRefGoogle Scholar
  25. Iliopoulou-Georgudaki, J. (1986): The relationship between climatic factors and forearm length of bats: evidence from the chiropterofauna of Lesvos island (Greece - East Aegean). Mammalia 50, 475–482.CrossRefGoogle Scholar
  26. Jones, G.; Duvergé, P. L.; Ransome, R. D. (1995): Conservation biology of an endangered species: field studies of greater horseshoe bats. Symp. Zool. Soc. London 67, 309–324.Google Scholar
  27. Kalcounis, M. C.; Brigham, R. M. (1995): Intraspecific variation in wing loading affects habitat use by little brown bats (Myotis lucifugus). Can. J. Zool. 73, 89–95.CrossRefGoogle Scholar
  28. Koehler, C. E.; Barclay, R. M. R. (2000): Postnatal growth and breeding biology of the hoary bat (Lasiurus cinereus). J. Mammalogy 81, 234–244.CrossRefGoogle Scholar
  29. Kunz, T.H.; Hood, W.R. (2000): Parental care and postnatal growth in the Chiroptera. In: Reproductive Biology of Bats. Ed. by E.G. Crichton and P.H. Krutzsch. San Diego: Academic Press. Pp. 415–468.CrossRefGoogle Scholar
  30. Kunz, T. H.; Stern, A. A. (1995): Maternal investment and post-natal growth in bats. Symp. Zool. Soc. London 67, 123–138.Google Scholar
  31. Kunz, T. H.; Wrazen, J. A.; Burnett, C. D. (1998): Changes in body mass and fat reserves in prehibernating little brown bats (Myotis lucifugus). Ecoscience 5, 8–17.CrossRefGoogle Scholar
  32. Kurta, A.; Bell, G. P.; Nagy, K. A.; Kunz, T. H. (1989): Energetics of pregnancy and lactation in free-ranging little brown bats (Myotis lucifugus). Physiol. Zool. 62, 804–818.CrossRefGoogle Scholar
  33. Lindstrom, J. (1999): Early development and fitness in birds and mammals. TREE 14, 343–348.PubMedGoogle Scholar
  34. Masson, D. (1999): Histoire naturelle d’une colonie de parturition de Rhinolophe euryale, Rhinolophus euryale, (Chiroptera) du sud-ouest de la France. Arvicola 11, 41–50.Google Scholar
  35. Mathews, L. H. (1937): The female sexual cycle in the British horse-shoe bats, Rhinolophus ferrumequinum insulanus and R. hipposideros minutus. Trans. Zool. Soc. (London) 32, 224–266.Google Scholar
  36. McAdam, A. G.; Boutin, S. (2003): Effects of food abundance on genetic and maternal variation in the growth rate of juvenile red squirrels. J. Evol. Biol. 16, 1249–1256.PubMedCrossRefGoogle Scholar
  37. McNab, B.K. (1982). Evolutionary alternatives in the physiological ecology of bats. In: Ecology of Bats. Ed. by T.H. Kunz. New York: Plenum Publishing Corporation. Pp. 151–200.CrossRefGoogle Scholar
  38. McOwat, T. P.; Andrews, P. T. (1995): The influence of climate on the growth rate of Rhinolophus ferrumequinum in West Wales. Myotis 32/33, 69–79.Google Scholar
  39. Norberg, U. M.; Rayner, J. M. V. (1987): Ecological morphology and flight in bats: wing adaptations, flight performance, foraging strategy and echolocation. Phil. Trans. R. Soc. Lond. 316, 335–427.CrossRefGoogle Scholar
  40. Ochoa-Acuna, H.; Francis, J. M.; Boness, D. J. (1998): Interannual variation in birth mass and postnatal growth rate of Juan Fernández fur seals. Can. J. Zool. 76, 978–983.CrossRefGoogle Scholar
  41. Peters, R. H. (1983): The Ecological Implications of Body Size. Cambridge: University Press. Pp. 329.CrossRefGoogle Scholar
  42. Promislov, D. E. L.; Harvey, P. H. (1990): Living fast and dying young: a comparative analysis of life-history variation among mammals. J. Zool. (London) 220, 417–437.CrossRefGoogle Scholar
  43. Rautenbach, I. L.; Kemp, A. C.; Scholtz, C. H. (1988): Fluctuations in availability of arthropods correlated with microchiropteran and avian predator activities. Koedoe 31, 77–90.CrossRefGoogle Scholar
  44. Racey, P.A. (1982): Ecology of bat reproduction. In: Ecology of Bats. Ed. by T.H. Kunz. New York: Plenum Publishing Corporation. Pp. 57–104.CrossRefGoogle Scholar
  45. Racey, P.A.; Entwistle, A.C. (2000): Life-history and reproductive strategies of bats. In: Reproductive Biology of Bats. Ed. by E.G. Crichton and P.H. Krutzsch. San Diego: Academic Press. Pp. 363–414.CrossRefGoogle Scholar
  46. Ransome, R. D. (1989): Population changes of greater horseshoe bats studied near Bristol over the past twenty-six years. Biol. J. Linn. Soc. 38, 71–82.CrossRefGoogle Scholar
  47. Ransome, R. D. (1998): The impact of maternity roost conditions on populations of greater horseshoe bats. English Nature Research Reports No. 292, 80pp. English Nature.Google Scholar
  48. Read, A. F.; Harvey, P. H. (1989): Life history differences among the eutherian radiations. J. Zool. (London) 219, 329–353.CrossRefGoogle Scholar
  49. Reiter, G. (2004): Postnatal growth and reproductive biology of Rhinolophus hipposideros (Chiroptera: Rhinolophidae). J. Zool. (London) 262, 231–241.CrossRefGoogle Scholar
  50. Ricklefs, R. E. (1979): Adaptation, constraint, and compromise in avian postnatal development. Biol. Rev. 54, 269–290.PubMedCrossRefGoogle Scholar
  51. Roer, H. (1973): Über die Ursachen hoher Jugendmortalität beim Mausohr, Myotis myotis. Bonn. Zool. Beitr. 24, 332–341.Google Scholar
  52. Rollinat, R.; Trouessart, E. (1897): Sur la reproduction des chauves-souris, II. Les Rhinolophes (1). Mem. Soc. Zool. Fr. 10, 114–138.Google Scholar
  53. Schober, W.; Grimmberger, E. (1998): Die Fledermause Europas. Stuttgart: Kosmos-Naturführer. Pp. 1–265.Google Scholar
  54. Stones, R. C.; Wiebers, J. E. (1965a): Seasonal changes in food consumption of little brown bats held in captivity at a “neutral” temperature of 92°1F. J. Mammalogy 46, 18–22.CrossRefGoogle Scholar
  55. Stones, R. C.; Wiebers, J. E. (1965b): A review of temperature regulation in bats (Chiroptera). Am. Midl. Nat. 74, 155–167.CrossRefGoogle Scholar
  56. Stones, R. C.; Wiebers, J. E. (1966): Body weight and temperature regulation of Myotis lucifugus at a low temperature of 101°C. J. Mammalogy 47, 520–521.CrossRefGoogle Scholar
  57. Taylor, L. R. (1963): Analysis of the effect of temperature on insects in flight. J. Anim. Ecol. 32, 99–117.CrossRefGoogle Scholar
  58. Tuttle, M. D. (1976): Population ecology of the gray bat (Myotis grisescens): factors influencing growth and survival of newly volant young. Ecology 57, 587–595.CrossRefGoogle Scholar
  59. Tuttle, M.D.; Stevenson, D. (1982): Growth and survival of bats. In: Ecology of Bats. Ed. by T.H. Kunz. New York: Plenum Publishing Corporation. Pp. 105–150.CrossRefGoogle Scholar
  60. Wilde, C. J.; Kerr, M. A.; Knight, C. H.; Racey, P. A. (1995): Lactation in vespertilionid bats. Symp. Zool. Soc. London 67, 139–149.Google Scholar
  61. Williams, C. B. (1940): An analysis of four years captures of insects in a light trap, Part II: the effect of weather conditions on insect activity; and estimation and forecasting of changes in the insect population. Trans. R. Entomol. Soc. London 90, 227–306.CrossRefGoogle Scholar
  62. Williams, C. B. (1961): Studies in the effect of weather conditions on the activity and abundance of insect populations. Phil. Trans. R. Soc. London B 244, 331–378.CrossRefGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2006

Authors and Affiliations

  1. 1.Animal Physiology, Zoological InstituteUniversity, TübingenTübingenGermany

Personalised recommendations