Advertisement

Mammalian Biology

, Volume 71, Issue 4, pp 227–237 | Cite as

Assessment of habitat quality for four small mammal species of the Monte Desert, Argentina

  • Valeria CorbalánEmail author
  • Solana Tabeni
  • Ricardo A. Ojeda
Original investigation

Abstract

In the temperate desert of Argentina, the combined action of climatic and anthropogenic factors has contributed to the formation of a highly heterogeneous landscape. In the central region of the Monte desert, four small mammal species (Eligmodontia typus, Calomys musculinus, Akodon molinae and Graomys griseoflavus) coexist and show different habitat uses in response to spatial variability. Three main habitat types are present in the region: mesquite forest, the creosotebush community and sand dunes. These habitat types are present also in the surrounding grazing area.

The objective of this study was to determine habitat quality for these species in a protected area (Reserve MaB Ñacuñán) and in the adjacent grazed area. For each species we estimated demographic parameters that are highly correlated to fitness in each habitat, and for both treatments (protected and grazed). We found that the protected area offered a higher quality habitat than the grazed area for all species, but principally A. molinae and G. griseoflavus. At a local scale, we found that A. molinae and C. musculinus clearly showed higher fitness in the more complex habitats as the creosotebush community and the mesquite forest. In contrast, for E. typus, open and simplest patches, such as sand dunes, were optimal for its survival and reproduction.

Key words

Rodents habitat quality aridlands demography 

Habitatqualität für vier Kleinsäugerarten der Monte-Wüste, Argentinien

Zusammenfassung

Aufgrund klimatischer und menschlicher Einflüsse findet sich in den temperaten Wüsten von Südamerika ein vielfältiges Landschaftsmosaik. Im zentralen Teil der Monte-Wüste koexistieren vier Kleinsäugerarten (Eligmodontia typus, Calomys musculinus, Akodon molinae und Graomys griseoflavus), die aber unterschiedliche Habitatpräferenzen zeigen. Drei wichtige Habitattypen kommen im Untersuchungsgebiet vor: Mesquite-Gebüsch, Larrea-Gebüsch und Dünen.

Die vorliegende Studie quantifiziert die Habitatqualität für die vier genannten Arten in einem Schutzgebiet (Reserve MAB Ñacuñán) sowie angrenzenden Weiden durch demographische Parameter. Diese Parameter korrelieren mit der Fitness im jeweiligen Habitat bzw. Nutzungstyp.

Ganz allgemein zeigt das Schutzgebiet eine bessere Habitatqualität als die beweideten Flächen (insbesondere für A. molinae und G. griseoflavus). Lokal fanden wir eine größere Fitness von A. molinae und C. musculinus im Mesquite- und Larrea-Gebüsch als in der weit weniger komplexen Sanddüne. Für E. typus dagegen erwiesen sich die Sanddünen als optimales Habitat für Überleben und Reproduktion.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. August, P. V. (1983): The role of habitat complexity and heterogeneity in structuring tropical mammal communities. Ecology 64, 1495–1507.CrossRefGoogle Scholar
  2. Beever, E. A.; Tausch, R. J.; Brussard, P. F. (2003): Characterizing grazing disturbance in semiarid ecosystems across broad scales, using diverse indices. Ecol. Appl. 13, 119–136.CrossRefGoogle Scholar
  3. Bissonette, J. A.; Broekhuizen, S. (1995): Martes populations as indicators of habitat spatial patterns: the need for a multiscale approach. In: Landscape Approaches in Mammalian Ecology and Conservation Ed. by W.Z. Lidicker Minneapolis: University of Minnesota Press. Pp. 95–121.Google Scholar
  4. Bowers, M. A.; Smith, H. D. (1979): Differential habitat utilization by sexes of the deermouse, Peromyscus maniculatus. Ecology 60, 869–875.CrossRefGoogle Scholar
  5. Brown, J. S.; Arel, Y.; Abramsky, Z.; Kotler, B. (1992): Patch use by gerbils (Gerbillus allenbyi) in sandy and rocky habitats. J. Mammalogy 73, 821–829.CrossRefGoogle Scholar
  6. Campos, C.; Ojeda, R.; Monge, S.; Dacar, M. (2001): Utilization of food resources by small and medium-sized mammals in the Monte Desert biome, Argentina. Austral. Ecol. 26, 142–149.CrossRefGoogle Scholar
  7. Corbalán, V. (2004): Uso de hábitat y ecologáa poblacional de pequeños mamíferos del desierto de Monte central, Mendoza, Argentina. Diss. thesis, Universidad Nacional de La Plata, Argentina.Google Scholar
  8. Corbalán, V. (2005): Microhabitat selection by murids rodents in the Monte desert of Argentina. J. Arid Environ. 65, 102–110.CrossRefGoogle Scholar
  9. Corbalán, V.; Ojeda, R. (2004): Spatial and temporal organization of small mammal communities in the Monte desert, Argentina. Mammalia 68, 5–14.CrossRefGoogle Scholar
  10. Crawley, M. J. (1993): GLIM for Ecologists. Oxford: Blackwell Scientific Publications.Google Scholar
  11. Diffendorfer, J. E. (1998): Testing models of source–sink dynamics and balanced dispersal. Oikos 81, 417–433.CrossRefGoogle Scholar
  12. Fretwell, S.D. (1972): Theory of habitat distribution. In: Populations in a Seasonal Environment Ed. by S.D. Fretwell. Princeton, NJ: Princeton University Press. Pp. 79–114.Google Scholar
  13. Fretwell, S.; Lucas, H. (1970): On territorial behavior and other factors influencing habitat distribution in birds, I: theoretical development. Acta Bioth. 19, 16–36.CrossRefGoogle Scholar
  14. Fryxell, J. M. (2001): Habitat suitability and source–sink dynamics of beavers. J. Anim. Ecol. 70, 310–316.CrossRefGoogle Scholar
  15. Giannoni, S. M.; Borghi, C. E.; Dacar, M.; Campos, C. M. (2005): Main food categories in diets of Sigmodontinae rodents in the Monte (Argentina). Mastozoología Neotropical 12, 181–187.Google Scholar
  16. Gonnet, J. M. (1998): Influencia del pastoreo sobre poblaciones de aves y mamíferos herbívoros en la región de la Reserva de la Biósfera ‘Ñacuñán’, Mendoza, Argentina. Diss. thesis, Universidad Nacional de Córdoba, Argentina.Google Scholar
  17. Gonnet, J. M.; Ojeda, R. A. (1998): Habitat use by small mammals in the arid Andean foothills of the Monte Desert of Mendoza, Argentina. J. Arid Environ. 38, 349–357.CrossRefGoogle Scholar
  18. Guevara, J. C.; Stassi, C. R.; Estevez, O. R. (1996): Effect of cattle grazing on range perennial grasses in the Mendoza plain, Argentina. J. Arid Environ. 34, 205–213.CrossRefGoogle Scholar
  19. Gundersen, G.; Johannsen, E.; Andreassen, H. P.; Ims, R. A. (2001): Source-sink dynamics: how sinks affect demography of sources. Ecol. Lett. 4, 14–21.CrossRefGoogle Scholar
  20. Holbrook, S. J. (1978): Habitat relationships and coexistence of four sympatric species of Peromyscus in Northwestern New Mexico. J. Mammalogy 59, 18–26.CrossRefGoogle Scholar
  21. Lidicker, W. Z. (1995): The landscape concept: something old, something new. In: Landscape Approaches in Mammalian Ecology and Conservation Ed. by W.Z. Lidicker. Minneapolis: University of Minnesota Press. Pp. 3–19.Google Scholar
  22. Loeb, S. C. (1999): Responses of small mammals to coarse woody debris in a southeastern pine forest. J. Mammalogy 80, 460–471.CrossRefGoogle Scholar
  23. Mares, A. M. (1973): Desert rodent ecology. Review for origin and structure of ecosystems convergent evolution research program. Acta Zoologica Lilloana 30, 207–225.Google Scholar
  24. McConway, K. J.; Jones, M. C.; Taylor, P. C. (1999): Statistical Modelling Using GENSTAT. London: Arnold.Google Scholar
  25. Ojeda, R. A. (1989): Small mammal responses to the fire in the Monte Desert, Argentina. J.Mammalogy 70, 416–420.CrossRefGoogle Scholar
  26. Pulliam, H. R. (2000): On the relationship between niche and distribution. Ecol. Lett. 3, 349–361.CrossRefGoogle Scholar
  27. Roig, V. G. (1971): Aportes al inventario de los Recursos Naturales Renovables de la provincia de Mendoza: La Reserva Forestal de Ñacuñán. Deserta 1, 1–239.Google Scholar
  28. Roig, F. A.; Rossi, B. (2001): Flora y vegetación de la reserva. In: El desierto del Monte: La reserva de Biosfera de Nacuñán Ed. by S. Claver and S. Roig-Juñent. IADIZA-MAB-UNESCO Pp. 41–70.Google Scholar
  29. Rosenzweig, M. L.; Winakur, J. (1969): Population ecology of desert rodent communities: habitats and environmental complexity. Ecology 50, 558–572.CrossRefGoogle Scholar
  30. Sanchez-Cordero, V. (1993): Estudio poblacional de la rata espinosa Heteromys desmarestianus en la selva húmeda en Veracruz, Mexico. In: Avances en el estudio de los mamíferos de México Ed. by R.A. Medellín and G. Ceballos. Mexico: Asociación Mexicana de Mastozoología. Pp. 301–316.Google Scholar
  31. Siegel, S. (1991): TitleEstadística no paramétrica. México: Editorial TrillasGoogle Scholar
  32. Sullivan, T. P.; Sullivan, D. S.; Lindgren, P. M. F. (2000): Small mammals and stand structure in young pine, seed–tree, and old-growth forest, southwest Canada. Ecol. Appl. 10, 1367–1383.CrossRefGoogle Scholar
  33. Tabeni, S.; Ojeda, R. A. (2005): Ecology of the Monte Desert small mammals in disturbed and undisturbed habitats. J. Arid Environ. 63, 244–255.CrossRefGoogle Scholar
  34. Taraborelli, P. A.; Corbalán, V.; Giannoni, S. (2003): Locomotion and escape modes in rodents of the Monte desert (Argentina). Ethology 109, 475–485.CrossRefGoogle Scholar
  35. Van Horne, B. (1982): Niches of adult and juvenile deer mice (Peromyscus maniculatus) in seral stages of coniferous forest. Ecology 63, 992–1003.CrossRefGoogle Scholar
  36. Van Horne, B. (1983): Density as a misleading indicator of habitat quality. J. Wildl. Manage. 47, 893–901.CrossRefGoogle Scholar
  37. Wheatley, M.; Larsen, K. W.; Boutin, S. (2002): Does density reflect habitat quality for North American red squirrels during a spruce-cone failure? J. Mammalogy 83, 716–727.CrossRefGoogle Scholar
  38. Winker, K.; Rappole, J. H.; Ramos, M. A. (1995): The use of movement data as an assay of habitat quality. Oecologia 101, 211–216.CrossRefGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2006

Authors and Affiliations

  • Valeria Corbalán
    • 1
    Email author
  • Solana Tabeni
    • 1
  • Ricardo A. Ojeda
    • 1
  1. 1.Instituto Argentino de Investigaciones de las Zonas ÁridasCONICETMendozaArgentina

Personalised recommendations