Advertisement

Mammalian Biology

, Volume 71, Issue 3, pp 144–158 | Cite as

Genetic structure, habitat fragmentation and bottlenecks in Danish bank voles (Clethrionomys glareolus)

  • Sisse Redeker
  • Liselotte W. Andersen
  • C. Pertoldi
  • A. B. Madsen
  • T. S. Jensen
  • J. M. Jørgensen
Original investigation

Abstract

Tissue-samples from 161 bank voles (Clethrionomys glareolus) collected in three forests (five sampling localities) situated in eastern Jutland (Denmark) were analysed by nine microsatellite loci. The genetic diversity found within the populations was high (He=0.753–0.806). Bank voles have specific habitat requirements favouring woodlots, hedgerows and deciduous forests as their prime living area. Hence, a natural or human-induced fragmentation of the forest may cause a sub-structuring of the populations and thereby a restriction of dispersal among populations. The sub-structuring indicated by the observed significant genetic differentiation among the five geographically distinct localities (Fst =0.033, P < 0.05) could either result from habitat fragmentation or a combination of home range behaviour and different tree composition in the forests. A road situated between two adjacent forests was not found to exert any barrier effect to the gene flow of bank voles. In one out of five localities investigated, genetic evidence for a recent bottleneck-like situation was found. Bank voles are known to exhibit sometimes huge density fluctuations not only from year to year but also from season to season. The bottleneck-like situation found could therefore be due to the low number of individuals during the low-density phase. © 2005 Deutsche Gesellschaft für Säugetierkunde. Published by Elsevier GmbH. All rights reserved.

Key words

Clethrionomys glareolus microsatellites habitat fragmentation density fluctuation 

Genetische Struktur, Lebensraumfragmentierung und Bestandseinbrüche bei dänischen Rötelmäusen (Clethrionomys glareolus)

Zusammenfassung

Gewebeproben von 161 Rötelmäusen (Clethrionomys glareolus) wurden an 5 Orten in drei Wäldern in Ost-Jütland gesammelt und an 9 Mikrosatellitenloci untersucht. Innerhalb der Bestände war die genetische Variabilität hoch (He=0.753–0.806). Rötelmäuse haben spezifische Habitatansprüche und bevorzugen Wäldchen, Hecken und Laubwald. Natürliche oder anthropogene Fragmentierung von Wäldern kann zur Substrukturierung von Rötelmaus-Populationen führen und den Austausch zwischen Beständen einschränken. Die in dieser Untersuchung gefundene genetische Populationsstruktur, angezeigt durch die signifikante genetische Divergenz zwischen den fünf Untersuchungsgebieten (Fst=0.033, P < 0.05), kann entweder durch Habitatfragmentierung oder durch eine Kombination aus Revierverhalten und Unterschieden im Baumbestand der untersuchten Wälder verursacht sein. Eine Straße zwischen zwei benachbarten Wäldern schränkte den Genfluß der Rötelmaus dagegen nicht ein. In einem der fünf Untersuchungsgebiete gibt es genetische Hinweise für einen historischen Bestandseinbruch. Rötelmausbestände fluktuieren z.T. stark, nicht nur zwischen Jahren, sondern auch zwischen Jahreszeiten. Mö glicherweise hat es im genannten Bestand einen solchen saisonalen Bestandseinbruch gegeben.

References

  1. Aaris-Sørensen, K. (1998): Danmarks forhistoriske dyreverden. Copenhagen: Gyldendal.Google Scholar
  2. Aars, J.; Ims, R. A.; Liu, H. P.; Mulvey, M.; Smith, M. H. (1998): Bank vole in linear habitats show restricted gene flow as revealed by mitochondrial DNA (mtDNA). Mol. Ecol. 7, 1383–1389.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Belkhir, K.; Castric, V.; Bonhomme, F. (2002): IDENTIX, a software to test for relatedness in a population using permutation methods. Mol. Ecol. Notes, 2, 611–614.CrossRefGoogle Scholar
  4. Blouin, M. S.; Parsons, M.; Lacaille, V.; Lotz, S. (1996): Use of microsatellite loci to classify individuals by relatedness. Mol. Ecol. 5, 393–401.PubMedCrossRefPubMedCentralGoogle Scholar
  5. Borkowska, A. (1999): Genetic and morphological variation among populations of the bank vole Clethrionomys glareolus from Northeastern Poland: the seasonal aspect. Z. Säugertierkd. 64, 285–297.Google Scholar
  6. Bright, P. W. (1993): Habitat fragmentation—problems and predictions for British mammals. Mammal Rev. 23, 101–111.CrossRefGoogle Scholar
  7. Burton, C.; Krebs, C. J.; Taylor, E. B. (2002): Population genetic structure of the cyclic snowshoe hare (Lepus americanus) in Southwestern Yukon. Canada. Mol. Ecol. 11, 1689–1701.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Cavalli-Sforza, L. L.; Edwards, A. W. F. (1967): Phylogenetic analysis: models and estimation procedures. Am. J. Hum. Genet. 19, 233–257.PubMedPubMedCentralGoogle Scholar
  9. Cornuet, J. M.; Luikart, G. (1996): Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144, 2001–2014.PubMedPubMedCentralGoogle Scholar
  10. Dallas, J. F.; Bonhomme, F.; Boursot, P.; Britton-Davidian, J.; Bauchaus, V. (1998): Population genetic structure in a Robertsonian race of house mice: evidence from microsatellite polymorphism. Heredity 80, 70–77.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Dallas, J. F.; Dod, B.; Boursot, P.; Prager, E. M.; Bonhomme, F. (1995): Population subdivision and gene flow in Danish house mice. Mol. Ecol. 4, 311–320.PubMedCrossRefPubMedCentralGoogle Scholar
  12. Dewsbury, D.; Baumgardner, D. J.; Sawrey, D. K.; Webster, D. G. (1982): The adaptive profile: comparative psychology of red-backed voles. J. Comp. Physiol. Psychol. 96, 649–660.CrossRefGoogle Scholar
  13. Ehrich, D.; Jorde, P. E.; Krebs, C. J.; Kenney, A. J.; Stacy, J. E.; Stenseth, N. C. (2001): Spatial structure of lemming populations (Dicrostonyx groenlandicus) fluctuating in density. Mol. Ecol. 10, 481–495.PubMedCrossRefPubMedCentralGoogle Scholar
  14. Favre, L.; Balloux, F.; Goudet, J.; Perrin, N. (1997): Female-biased dispersal in the monogamous mammal Crocidura russula: evidence from field data and microsatellite patterns. Proc. R. Soc. London B, 264, 127–132.CrossRefGoogle Scholar
  15. Garza, J. C.; Williamson, E. G. (2001): Detection of reduction in population size using data from microsatellite loci. Mol. Ecol. 10, 305–318.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Gębczyński, M.; Nielsen, J. T.; Simonsen, V. (1986): An electrophoretic comparison between three sympatric species of rodents from Jutland, Denmark. Hereditas 104, 55–59.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Gębczyński, M.; Ratkiewicz, M. (1998): Does biotope diversity promote an increase of genetic variation in the bank vole population? Acta Theriol. 43, 163–173.CrossRefGoogle Scholar
  18. Gerlach, G.; Musolf, K. (2000): Fragmentation of landscape as a cause for genetic subdivision in bank voles. Conserv. Biol. 14, 1066–1074.CrossRefGoogle Scholar
  19. Gockel, J.; Harr, B.; Schlötterer, C.; Arnold, W.; Gerlach, G.; Tautz, D. (1997): Isolation and characterization of microsatellite loci from Apodemus flavicollis (rodentia, muridae) and Clethrionomys glareolus (rodentia, muridae). Mol. Ecol. 6, 597–599.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Goudet, J. (1995): FSTAT version 1.2. A computer program to calculate F-statistics. Heredity 86, 485–486.CrossRefGoogle Scholar
  21. Goudet, J.; Raymond, M.; Demeeus, T.; Rousset, F. (1996): Testing differentiation in diploid populations. Genetics 144, 1933–1940.PubMedPubMedCentralGoogle Scholar
  22. Hansson, L.; Henttonen, H. (1988): Rodent dynamics as community processes. Trends Ecol. Evol. 3, 195–200.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Harr, B.; Musolf, K.; Gerlach, G. (2000): Characterization and isolation of DNA microsatellite primers in wood mice (Apodemus sylvaticus, Rodentia). Mol. Ecol. 9, 1661–1686.CrossRefGoogle Scholar
  24. Hartl, D.; Clark, A. G. (1997): Principles of Population Genetics. 3rd ed. Sunderland, MA, USA: Sinauer Associates Publishers, Inc.Google Scholar
  25. Ishibashi, Y.; Yoshinaga, Y.; Saitoh, T.; Abe, S.; Iida, H.; Yoshida, M. C. (1999): Polymorphic microsatellite DNA markers in the field vole Microtus montebelli. Mol. Ecol. 8, 157–168.Google Scholar
  26. Jensen, T. S. (1975): Population estimations and population dynamics of two Danish forest rodent species. Vidensk. medd. Dansk Naturhist. For. 138, 65–86.Google Scholar
  27. Jensen, T. S. (1982): Seed production and outbreaks of non-cyclic rodent populations in deciduous forests. Oecologia 54, 184–192.PubMedCrossRefPubMedCentralGoogle Scholar
  28. Jensen, T. S. (1984): Habitat distribution, home range and movements of rodents in mature forest and reforestation. Acta Zool. Fenn. 171, 305–307.Google Scholar
  29. Kimura, M.; Weiss, G. H. (1964): The stepping stone model of population structure and the decrease of genetic correlation with distance. Genetics 49, 561–576.PubMedPubMedCentralGoogle Scholar
  30. Kyle, C. J.; Strobeck, C. (2001): Genetic structure of North American wolverine (Gulo gulo) populations. Mol. Ecol. 10, 337–347.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Lande, R. (1994): Risk of population extinction from fixation of new deleterious mutations. Evolution 48, 1460–1469.PubMedCrossRefPubMedCentralGoogle Scholar
  32. Luikart, G.; Allendorf, F. W.; Cornuet, J. M.; Sherwin, W. B. (1998): Distortion of allele frequency distributions provides a test for recent population bottlenecks. J. Hered. 89, 238–247.PubMedCrossRefGoogle Scholar
  33. Mantel, N. (1967): The detection of disease clustering as a generalized regression approach. Cancer Res. 27, 209–220.PubMedPubMedCentralGoogle Scholar
  34. Maudet, C.; Bassano, B.; Breitenmoser-Würsten, C.; Gauthier, D.; Obexer-Ruff, G.; Michallet, J.; Taberlet, P.; Luikart, G. (2002): Microsatellite DNA and recent statistical methods in wildlife conservation management: applications in Alpine ibex (Capra ibex (ibex)). Mol. Ecol. 11, 421–436.CrossRefGoogle Scholar
  35. Milligan, B. G. (1998): Total DNA isolation. In: Molecular Genetic Analysis of Populations, Ed. by A. R. Hoelzel. New York: Oxford University Press, Pp. 59–88.Google Scholar
  36. Mitchell-Jones, A. J.; Amori, G.; Bogdanowicz, W.; Kristufek, B.; Reijnders, P. J. H.; Spitzenberger, F.; Stubbe, M.; Thissen, J. B. M.; Vohralik, V.; Zima, J. (eds.) (1999): The Atlas of European Mammals. London: Academic Press.Google Scholar
  37. Mossman, C. A.; Waser, P. M. (2001): Effects of habitat fragmentation on population genetic structure in the white-footed mouse (Peromyscus leucopus). Can. J. Zool. 79, 285–295.CrossRefGoogle Scholar
  38. Motro, U.; Thomson, G. (1982): On heterozygosity and the effective size of populations subject to size changes. Evolution 36, 1059–1066.PubMedCrossRefGoogle Scholar
  39. Paetkau, D.; Calvert, W.; Stirling, I.; Strobeck, C. (1995): Microsatellite analysis of population structure in Canadian polar bears. Mol. Ecol. 4, 347–354.PubMedCrossRefPubMedCentralGoogle Scholar
  40. Paetkau, D.; Slade, R.; Burden, M.; Estoup, A. (2004): Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Mol. Ecol. 13, 55–65.PubMedCrossRefPubMedCentralGoogle Scholar
  41. Paillat, G.; Butet, A. (1996): Spatial dynamics of the bank vole (Clethrionomys glareolus) in a fragmented landscape. Acta Ecol. 17, 553–559.Google Scholar
  42. Piry, S.; Luikart, G.; Cornuet, J. M. (1999): BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J. Hered. 90, 502–503.CrossRefGoogle Scholar
  43. Piry, S.; Alapetite, A.; Cornuet, J. M.; Paetkau, D.; Baudouin, L.; Estoup, A. (2004): GeneClass2: a software for genetic assignment and first generation migrants detection. J. Hered. 95, 536–539.PubMedCrossRefPubMedCentralGoogle Scholar
  44. Pritchard, J.; Stephens, M.; Donnelly, P. (2000): Inference of population structure using multilocus genotype data. Genetics 155, 945–959.PubMedPubMedCentralGoogle Scholar
  45. Queller, D. C.; Goodnight, K. F. (1989): Estimating relatedness using genetic markers. Evolution 43, 258–275.PubMedCrossRefPubMedCentralGoogle Scholar
  46. Rannala, B.; Mountain, J. L. (1997): Detecting immigration by using multilocus genotypes. Proc. Natl. Acad. Sci. USA 94, 9197–9221.PubMedCrossRefPubMedCentralGoogle Scholar
  47. Raymond, M.; Rousset, F. (1995): An exact test for population differentiation. Evolution 49, 1280–1283.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Reese, C. L.; Waters, J. M.; Pagels, J. F.; Brown, B. L. (2001): Genetic structuring of relict populations of Gapper’s red-backed vole (Clethrionomys gapperi). J. Mammalogy 82, 289–301.CrossRefGoogle Scholar
  49. Rice, W. R. (1989): Analysing tables of statistical tests. Evolution 43, 223–225.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Rousset, F. (1997): Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145, 1219–1228.PubMedPubMedCentralGoogle Scholar
  51. Slatkin, M. (1995): A measure of population subdivision based on microsatellite allele frequencies. Genetics 139, 457–462.PubMedPubMedCentralGoogle Scholar
  52. Steen, H.; Ims, R. A.; Sonerud, G. A. (1996): Spatial and temporal patterns of small-rodent population dynamics at a regional scale. Ecology 77, 2365–2372.CrossRefGoogle Scholar
  53. Stenseth, N. C. (1999): Population cycles in voles and lemmings: density dependence and phase dependence in a stochastic world. Oikos 87, 427–461.CrossRefGoogle Scholar
  54. Stenseth, N. C.; Ims, R. A. (1993): The Biology of Lemmings. London: Academic Press.Google Scholar
  55. Van Apeldoorn, R. C.; Oostenbrink, W. T.; Van Winden, A.; Van der Zee, F. F. (1992): Effects of habitat fragmentation on the bank vole, Clethrionomys glareolus, in an agricultural landscape. Oikos 65, 265–274.CrossRefGoogle Scholar
  56. Van de Zande, L.; Van Appeldoon, R. C.; Blijdenstein, A. F.; De Jong, D.; Van Delden, W.; Bijlsma, R. (2000): Microsatellite analysis of population structure and genetic differentiation within and between populations of the root vole, Microtus oeconomus in the Netherlands. Mol. Ecol. 9, 1651–1656.PubMedCrossRefPubMedCentralGoogle Scholar
  57. Wahlund, S. (1928): Composition of populations from the perspective of the theory of heredity. Hereditas 11, 65–105.CrossRefGoogle Scholar
  58. Weir, B. S.; Cockerham, C. C. (1984): Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370.Google Scholar
  59. Yanes, M.; Velasco, J. M.; Suarez, F. (1995): Permeability of roads and railways to vertebrates- the importance of culverts. Biol. Conserv. 71, 217–222.CrossRefGoogle Scholar
  60. Zejda, J.; Pelikan, J. (1969): Movements and home ranges of some rodents in lowland forests. Folia Zool. 18, 143–162.Google Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2006

Authors and Affiliations

  • Sisse Redeker
    • 1
    • 4
    • 5
  • Liselotte W. Andersen
    • 1
    • 4
    • 5
  • C. Pertoldi
    • 2
    • 4
    • 5
  • A. B. Madsen
    • 1
    • 4
    • 5
  • T. S. Jensen
    • 5
    • 4
    • 5
  • J. M. Jørgensen
    • 3
    • 4
    • 5
  1. 1.Department of Wildlife Ecology and BiodiversityNational Environmental Research InstituteKaløDenmark
  2. 2.University of AarhusDepartment of ZoophysiologyAarhusDenmark
  3. 3.Department of ZoophysiologyNatural History MuseumAarhusDenmark
  4. 4.University of AarhusDepartment of Ecology and GeneticsAarhusDenmark
  5. 5.Department of Applied BiologyEstación Biológica DoñanaSevilleSpain

Personalised recommendations