Advertisement

Mammalian Biology

, Volume 70, Issue 5, pp 300–306 | Cite as

Winter feeding behaviour of European rabbits in a temperate zone habitat

  • H. G. RödelEmail author
Original investigation

Abstract

Herbivores living in seasonal environments commonly have to deal with reduced food availability and quality during the winter season. The present study investigated how European rabbits Oryctolagus cuniculus living in a grassland habitat adapt their feeding behaviour to cope with this situation. Both adult and subadult animals markedly increased their feeding rates throughout the course of the winter, with the rates in subadults being generally higher. Nevertheless, both age classes showed a significant decline in body mass throughout the winter averaging 22.3% of the autumn mass in subadult and 9.7% in adult animals. In late winter, an increase in the faecal sand content was found, indicating that the animals were feeding on ground-level plant parts. Measurements of nitrogen content of (1) grass leaves and stems and (2) ground-level sprouts and roots demonstrated a decrease in the food quality of grass leaves and stems from early to late winter. In contrast, the nitrogen content of roots and ground-level sprouts remained stable. It can be speculated that the animals increasingly switched to ground-level plant parts as alternative food in the course of the winter in order to satisfy their needs for a sufficient source of nitrogen.

Keywords

Oryctolagus cuniculus food quality nitrogen content 

Das Freßverhalten des Europäischen Wildkaninchens während des Winters, untersucht an einer Population der gemäßigten Zonen

Zusammenfassung

Herbivore, die in einer saisonal geprägten Umwelt leben, sind während der Winterperiode häufig mit verminderter Verfügbarkeit und Qualität ihrer Nahrung konfrontiert. In der vorliegenden Studie wurde untersucht, wie Europäische Wildkaninchen Oryctolagus cuniculus, die in einem überwiegend aus einer Grasfläche bestehenden Habitat lebten, ihr Freßverhalten an diese Situation anpassen. Sowohl adulte als auch subadulte Tiere zeigten einen starken Anstieg in ihrer Freßrate im Verlauf des Winters, wobei die Raten der subadulten Tiere generell höher lagen. Jedoch zeigten Tiere beider Altersklassen auch signifikante Körpermasseverluste während des Winters, die sich bei subadulten Tieren auf im Mittel 22,3% bezüglich der Herbstmasse und bei adulten Tieren auf 9,7% beliefen. Im späten Winter zeigte sich ein erhöhter Sandanteil im Kot, was auf die Aufnahme von bodennahen Pflanzenteilen hindeutete. Messungen des Stickstoffgehalts in (1) Graßblättern und -stengel und (2) bodennahen Trieben und Wurzeln ließen auf eine Abnahme der Nahrungsqualität von Graßblättern und Stengeln schließen. Dagegen blieb der Stickstoffgehalt von Wurzeln und bodennahen Trieben stabil. Es kann daher angenommen werden, daß die Tiere zunehmend auf Wurzeln und bodennahe Triebe als alternative Nahrungsquelle zurückgriffen und auf diese Weise ihren Bedarf an Stickstoff deckten.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anonymous (1990): Protein in animal feed, combustion method (Dumas method). In: AOAC Official Methods of Analysis. 15th Ed. Method 990.03. Arlington: Association of Official Analytical Chemists.Google Scholar
  2. Ball, J. P.; Danell, K.; Sunesson, P. (2000): Response of a herbivore community to increased food quality and quantity: an experiment with nitrogen fertilizer in a boreal forest. J. Appl. Ecol. 37, 247–255.CrossRefGoogle Scholar
  3. Bonferroni, C. E. (1936): Teoria statistica delle classi e calcolo delle probabilit ‘a. Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commerciali di Firenze 8, 3–62.Google Scholar
  4. Cowan, D. P. (1987): Aspects of the social organisation of the European rabbit (Oryctolagus cuniculus). Ethology 75, 197–210.CrossRefGoogle Scholar
  5. Crawley, M. J. (1983): Herbivory: the dynamics of animal–plant interactions. Oxford: Blackwell Scientific Publications.Google Scholar
  6. Festa-Bianchet, M.; Jorgenson, J. T.; King, W. J. L.; Smith, K. G.; Wishart, W. D. (1996): The development of sexual dimorphism: seasonal and lifetime mass changes of bighorn sheep. Can. J. Zool. 76, 330–342.CrossRefGoogle Scholar
  7. Flux, J. E. C. (1994): World distribution. In: The European Rabbit. History and Biology of a Successful Colonizer, Ed. by H. V. Thompson, C. M. King. Oxford: Oxford University Press, Pp. 9–21.Google Scholar
  8. Hackländer, K.; Arnold, W.; Ruf, T. (2002): Postnatal development and thermoregulation in the precocial European hare (Lepus europaeus). J. Comp. Physiol. 172, 183–190.CrossRefGoogle Scholar
  9. Hobbs, N. T. (1989): Linking energy balance to survival in mule deer: development and test of a simulation model. Bethesda: Wildlife Monogr. 101, 1–39.Google Scholar
  10. Mattson, W. J. (1980): Herbivory in relation to plant nitrogen content. Annu. Rev. Ecol. Syst. 11, 119–161.CrossRefGoogle Scholar
  11. Myers, K.; Poole, W. E. (1961): A study of the biology of the wild rabbit, Oryctolagus cuniculus (L.), in confined populations, II: the effects of season and population increase on behaviour. CSIRO Wildlife Res. 6, 1–41.CrossRefGoogle Scholar
  12. Mykytowycz, R. (1960): Social behaviour of an experimental colony of wild rabbits, Oryctolagus cuniculus (L.). III: second breeding season. CSIRO Wildlife Res. 5, 1–20.CrossRefGoogle Scholar
  13. Novakova, E.; Vanek, J. (1956): Beitrag zur Kenntnis der Nahrungswahl des Hasen. Myslivost 2, 20.Google Scholar
  14. Peeters, J. E.; Charlier, G.; Antoine, O.; Mammerick, M. (1984): Clinical and pathological changes after Eimeria intestinalis infections in rabbits. Zentralbl. Veterinärmed. 31, 9–24.CrossRefGoogle Scholar
  15. Rödel, H. G. (2000): Low temperature effects and social influences on physiological condition of subadult wild rabbits. In: Life in the Cold, Ed. by G. Heldmaier, M. Klingenspor. Berlin: Springer, Pp. 511–518.CrossRefGoogle Scholar
  16. Rödel, H. G.; Bora, A.; Kaiser, J. (2000): Growth and mortality of juvenile wild rabbits (Oryctolagus cuniculus L). Beitr. Jagd- Wildforsch. 2, 239–246.Google Scholar
  17. Rödel, H. G.; Bora, A.; Hutzelmeyer, H.; Kaiser, J.; Kaetzke, P.; Khaschei, M.; von Holst, D. (2004a): Over-winter survival in subadult European rabbits: weather effects, density-dependence, and the impact of individual characteristics. Oecologia 140, 566–576.CrossRefGoogle Scholar
  18. Rödel, H. G.; Völkl, W.; Kilias, H. (2004b): Winter browsing of brown hares: evidence for diet breadth expansion. Mamm. biol. 69, 410–419.CrossRefGoogle Scholar
  19. Rodgers, W. A. (1976): Seasonal diet preferences of impala from South East Tanzania. East African Wildlife J. 14, 331–333.CrossRefGoogle Scholar
  20. Rogers, P. M.; Arthur, C. P.; Soriguer, R. C. (1994): The rabbit in continental Europe. In: The European Rabbit. History and Biology of a Successful Colonizer, Ed. by H. V. Thompson, C. M. King. Oxford: Oxford University Press, Pp. 22–63.Google Scholar
  21. Severinghaus, C. W. (1981): Overwinter weight loss in white-tailed deer in New York. NY. Fish Game J. 28, 61–67.Google Scholar
  22. Sinclair, A. R. E. (1974): The resource limitation of trophic levels in tropical grassland ecosystems. J. Anim. Ecol. 44, 497–520.CrossRefGoogle Scholar
  23. Stefanski, V.; Engler, H. (1998): Effects of acute and chronic social stress on blood cellular immunity in rats. Phys. Behav. 64, 733–741.CrossRefGoogle Scholar
  24. Stodart, E. (1968): Coccidiosis in wild rabbits Oryctolagus cuniculus (L.), at four sites in different climatic regions in Eastern Australia. I: relationship with age of the rabbit. Aust. J. Zool. 16, 69–85.CrossRefGoogle Scholar
  25. Van Deelen, T. R.; Campa, H.; Haufler, J. B.; Thompson, P. D. (1997): Mortality patterns of white-tailed deer in Michigan’s Upper Peninsula. J. Wildlife Manage. 61, 903–910.CrossRefGoogle Scholar
  26. von Holst, D. (1998): The concept of stress and its relevance for animal behavior. Adv. Study Behav. 27, 1–131.CrossRefGoogle Scholar
  27. Wallage-Drees, J. M. (1986): Seasonal changes in the condition of rabbits Oryctolagus cuniculus (L.), in a coastal dune area. Z. Säugetierkunde 51, 26–36.Google Scholar
  28. Wallage-Drees, J. M.; Deinum, B. (1986): Quality of the diet selected by wild rabbits (Oryctolagus cuniculus (L.)) in autumn and winter. Netherlands J. Zool. 36, 438–448.Google Scholar
  29. White, T. C. R. (1978): The importance of a relative shortage of food in animal ecology. Oecologia 33, 71–86.CrossRefGoogle Scholar
  30. White, T. C. R. (1993): The inadequate environment: nitrogen and the abundance of animals. Berlin: Springer.CrossRefGoogle Scholar
  31. Zörner, H.; Stubbe, C.; Grüneberg, H. (1984): Shrub and bark eating by roe and hare–findings in game research zone of Hakel. Beitr. Jagd- Wildforsch. 10, 255–266.Google Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2005

Authors and Affiliations

  1. 1.Department of Animal PhysiologyUniversity of BayreuthBayreuthGermany

Personalised recommendations