Imaging of human lens lipids by desorption electrospray ionization mass spectrometry

  • Shane R. Ellis
  • Chunping Wu
  • Jane M. Deeley
  • Xiangjia Zhu
  • Roger J. W. Truscott
  • Marc in het Panhuis
  • R. Graham Cooks
  • Todd W. Mitchell
  • Stephen J. Blanksbya
Article

Abstract

The lipid composition of the human lens is distinct from most other tissues in that it is high in dihydrosphingomyelin and the most abundant glycerophospholipids in the lens are unusual 1-O-alkyl-ether linked phosphatidylethanolamines and phosphatidylserines. In this study, desorption electrospray ionization (DESI) mass spectrometry-imaging was used to determine the distribution of these lipids in the human lens along with other lipids including, ceramides, ceramide-1-phosphates, and lyso 1-O-alkyl ethers. To achieve this, 25 μm lens slices were mounted onto glass slides and analyzed using a linear ion-trap mass spectrometer equipped with a custom-built, 2-D automated DESI source. In contrast to other tissues that have been previously analyzed by DESI, the presence of a strong acid in the spray solvent was required to desorb lipids directly from lens tissue. Distinctive distributions were observed for [M + H]+ ions arising from each lipid class. Of particular interest were ionized 1-O-alkyl phosphatidylethanolamines and phosphatidylserines, PE (18:1e/18:1), and PS (18:1e/18:1), which were found in a thin ring in the outermost region of the lens. This distribution was confirmed by quantitative analysis of lenses that were sectioned into four distinct regions (outer, barrier, inner, and core), extracted and analyzed by electrospray ionization tandem mass spectrometry. DESI-imaging also revealed a complementary distribution for the structurally-related lyso 1-O-alkyl phosphatidylethanolamine, LPE (18:1e), which was localized closer to the centre of the lens. The data obtained in this study indicate that DESI-imaging is a powerful tool for determining the spatial distribution of human lens lipids.

Supplementary material

13361_2011_211202095_MOESM1_ESM.pdf (284 kb)
Supplementary material, approximately 290 KB.

References

  1. 1.
    Forrester, J. V.; Dick, A. D.; McMenamin, P. G.; Roberts, F. The Eye: Basic Science in Practice; Saunders Elsevier: Philadelphia, 2008; pp 228–236.Google Scholar
  2. 2.
    Byrdwell, W. C.; Borchman, D.; Porter, R. A.; Taylor, K. G.; Yappert, M. C. Separation and Characterization of the Unknown Phospholipid in Human Lens Membranes. Invest. Ophthalmol. Vis. Sci. 1994, 35, 4333–4343.Google Scholar
  3. 3.
    Deeley, J. M.; Mitchell, T. W.; Wei, X.; Korth, J.; Nealon, J. R.; Blanksby, S. J.; Truscott, R. J. W. Human Lens Lipids Differ Markedly From Those of Commonly Used Experimental Animals. Biochim. Biophys. Acta, Mol. Cell. Biol. Lipids. 2008, 1781, 288–298.CrossRefGoogle Scholar
  4. 4.
    Deeley, J. M.; Thomas, M. C.; Truscott, R. J. W.; Mitchell, T. W.; Blanksby, S. J. Identification of Abundant Alkyl Ether Glycerophospholipids in the Human Lens by Tandem Mass Spectrometry Techniques. Anal. Chem. 2009, 81, 1920–1930.CrossRefGoogle Scholar
  5. 5.
    Merchant, T. E.; Lass, J. H.; Meneses, P.; Greiner, J. V.; Glonek, T. Human Crystalline Lens Phospholipid Analysis with Age. Invest. Ophthalmol. Vis. Sci. 1991, 32, 549–555.Google Scholar
  6. 6.
    Yappert, M. C.; Rujoi, M.; Borchman, D.; Vorobyov, I.; Estrada, R. Glycero- Versus Sphingophospholipids: Correlations with Human and Nonhuman Mammalian Lens Growth. Exp. Eye Res. 2003, 76, 725–734.CrossRefGoogle Scholar
  7. 7.
    Rujoi, M.; Estrada, R.; Yappert, M. C. In Situ MALDI-TOF MS Regional Analysis of Neutral Phospholipids in Lens Tissue. Anal. Chem. 2004, 76, 1657–1663.CrossRefGoogle Scholar
  8. 8.
    Petkovic, M.; Schiller, J.; Müller, M.; Benard, S.; Reichl, S.; Arnold, K.; Arnhold, J. Detection of Individual Phospholipids in Lipid Mixtures by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry: Phosphatidylcholine Prevents the Detection of Further Species. Anal. Biochem. 2001, 289, 202–216.CrossRefGoogle Scholar
  9. 9.
    Murphy, R. C.; Hankin, J. A.; Barkley, R. M. Imaging of Lipid Species by MALDI Mass Spectrometry. J. Lipid Res. 2009, 50, S217-S322.Google Scholar
  10. 10.
    Vidova, V.; Pol, J.; Volny, M.; Novak, P.; Havlicek, V.; Wiedmer, S. K.; Holopainen, J. M. Visualizing Spatial Lipid Distribution in Porcine Lens by MALDI Imaging High-Resolution Mass Spectrometry. J. Lipid Res. 2010, 51, 2295–2302.CrossRefGoogle Scholar
  11. 11.
    Deeley, J. M.; Hankin, J. A.; Friedrich, M. C.; Murphy, R. C.; Truscott, R. J. W.; Blanksby. S. J.; Mitchell, T. W. Sphingolipid Distribution Changes with Age in the Human Lens. J. Lipid Res. 2010, 51, 2753–2760.CrossRefGoogle Scholar
  12. 12.
    Thibault, D. B.; Gillam, C. J.; Grey, A. C.; Han, J.; Schey, K. L. MALDI Tissue Profiling of Integral Membrane Proteins from Ocular Tissues. J. Am. Soc. Mass Spectrom. 2008, 19, 814–822.CrossRefGoogle Scholar
  13. 13.
    Grey, A. C.; Schey, K. L. Age-Related Changes in the Spatial Distribution of Human Lens β-Crystallin Products by MALDI Imaging Mass Spectrometry. Invest. Ophthalmol. Vis. Sci. 2009, 50, 4319–4329.CrossRefGoogle Scholar
  14. 14.
    Grey, A. C.; Schey, K. L. Distribution of Bovine and Rabbit Lens β-Crystallin Products by MALDI Imaging Mass Spectrometry. Mol. Vis. 2008, 14, 171–179.Google Scholar
  15. 15.
    Han, J.; Schey, K. L. MALDI Tissue Imaging of Ocular Lens β-Crystallin. Invest. Ophthalmol. Vis. Sci. 2006, 47, 2990–2996.CrossRefGoogle Scholar
  16. 16.
    Hankin, J. A.; Barkley, R. M.; Murphy, R. C. Sublimation as a Method of Matrix Application for Mass Spectrometric Imaging. J. Am. Soc. Mass Spectrom. 2007, 18, 1646–1652.CrossRefGoogle Scholar
  17. 17.
    Cooks, R. G.; Ouyang, Z.; Takats, Z.; Wiseman, J. M. Ambient Mass Spectrometry. Science 2006, 311, 1566–1570.CrossRefGoogle Scholar
  18. 18.
    Zoltan, T.; M, W.; Bodgan, G.; Cooks, R. G. Mass Spectrometry Sampling Under Ambient Conditions with Desorption Electrospray Ionization. Science 2004, 306, 471–473.CrossRefGoogle Scholar
  19. 19.
    Ifa, D. R.; Wiseman, J. M.; Song, Q.; Cooks, R. G. Development of Capabilities for Imaging Mass Spectrometry Under Ambient Conditions with Desorption Electrospray Ionization (DESI). Int. J. Mass Spectrom. 2007, 259, 8–15.CrossRefGoogle Scholar
  20. 20.
    Dill, A. L.; Ifa, D. R.; Manicke, N. E.; Costa, A. B.; Ramos-Vara, J. A.; Knapp, D. W.; Cooks, R. G. Lipid Profiles of Canine Invasive Transitional Cell Carcinoma of the Urinary Bladder and Adjacent Normal Tissue by Desorption Electrospray Ionization Imaging Mass Spectrometry. Anal. Chem. 2009, 81, 8758–8764.CrossRefGoogle Scholar
  21. 21.
    Manicke, N. E.; Wiseman, J. M.; Ifa, D. R.; Cooks, R. G. Desorption Electrospray Ionization (DESI) Mass Spectrometry and Tandem Mass Spectrometry (MS/MS) of Phospholipids and Sphingolipids: Ionization, Adduct Formation, and Fragmentation. J. Am. Soc. Mass Spectrom. 2008, 19, 531–543.CrossRefGoogle Scholar
  22. 22.
    Wu, C.; Ifa, D. R.; Manicke, N. E.; Cooks, R. G. Rapid, Direct Analysis of Cholesterol by Charge Labeling in Reactive Desorption Electrospray Ionization. Anal. Chem. 2009, 81, 7618–7624.CrossRefGoogle Scholar
  23. 23.
    Blanksby, S. J.; Mitchell, T. W. Advances in Mass Spectrometry for Lipidomics. Annu. Rev. Anal. Chem. 2010, 3, 433–465.CrossRefGoogle Scholar
  24. 24.
    Wu, C.; Ifa, D. R.; Manicke, N. E.; Cooks, R. G. Molecular Imaging of Adrenal Gland by Desorption Electrospray Ionization Mass Spectrometry. Analyst 2010, 135, 28–32.CrossRefGoogle Scholar
  25. 25.
    Wiseman, J. M.; Ifa, D. R.; Venter, A.; Cooks, R. G. Ambient Molecular Imaging by DESI-MS. Nature Protocols 2008, 3, 517–524.CrossRefGoogle Scholar
  26. 26.
    Wiseman, J. M.; Ifa, D. R.; Zhu, Y.; B, K. C.; Manicke, N. E.; Kissinger, P. T.; Cooks, R. G. Desorption Electrospray Ionization Mass Spectrometry: Imaging Drugs and Metabolites in Tissues. Proc. Nat. Acad. Sci. U.S.A. 2008, 105, 18120–18125.CrossRefGoogle Scholar
  27. 27.
    Manicke, N. E.; Kistler, T.; Ifa, D. R.; Cooks, R. G.; Ouyang, Z. High-Throughput Quantitative Analysis by Desorption Electrospray Ionization Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2009, 20, 321–325.CrossRefGoogle Scholar
  28. 28.
    Heys, K. R.; Friedrich, M. G.; Truscott, R. J. W. Free and Bound Water in Normal and Cataractous Human Lenses. Invest. Ophthalmol. Vis. Sci. 2008, 49, 1991–1997.CrossRefGoogle Scholar
  29. 29.
    Folch, J.; Lees, M.; Stanley, G. H. S. A Simple Method For The Isolation and Purification of Total Lipids from Animal Tissues. J. Biol. Chem. 1957, 226, 497–509.Google Scholar
  30. 30.
    Wiseman, J. M.; Ifa, D. R.; Song, Q.; Cooks, R. G. Tissue Imaging at Atmospheric Pressure Using Desorption Electrospray Ionization (DESI) Mass Spectrometry. Angew. Chem.; Int. Ed. 2006, 45, 7188–7192.CrossRefGoogle Scholar
  31. 31.
    Manicke, N. E.; Nefliu, M.; Wu, C.; Woods, J. W.; Reiser, V.; Hendrickson, R. C.; Cooks, R. G. Imaging of Lipids in Atheroma by Desorption Electrospray Ionization Mass Spectrometry. Anal. Chem. 2009, 81, 8702–8707.CrossRefGoogle Scholar
  32. 32.
    Zigman, S.; Paxhia, T.; Marinetti, G.; Girsch, S. Lipids of Human Lens Fiber Cell Membranes. Curr. Eye Res. 1984, 3, 887–896.CrossRefGoogle Scholar
  33. 33.
    Lapetina, E. G.; Soto, E. F.; Robertis, E. D. Lipids and Proteolipids in Isolated Subcellular Membranes of Rat Brain Cortex. J. Neurochem. 1968, 15, 437–445.CrossRefGoogle Scholar
  34. 34.
    Gonen, T.; Cheng, Y.; Sliz, P.; Hiroaki, Y.; Fujiyoshi, Y.; Harrison, S. C.; Walz, T. Lipidprotein interactions in double-layered two-dimensional AQP0 crystals. Nature 2005, 438, 633–638.CrossRefGoogle Scholar
  35. 35.
    Fagerholm, P. P.; Philipson, B. T.; Lindström, B. Normal Human Lens—The Distribution of Protein. Exp. Eye Res. 1981, 33, 615–620.CrossRefGoogle Scholar
  36. 36.
    DePuy, C. H.; King, R. W. Pyrolytic cis Eliminations. Chem. Rev. 1960, 60, 431–457.CrossRefGoogle Scholar
  37. 37.
    Estrada, R.; Puppato, A.; Borchman, D.; Yappert, M. C. Reevaluation of the Phospholipid Composition in Membranes of Adult Human Lenses by 31P NMR and MALDI MS. Biochim. Biophys. Acta, Biomembr. 2010, 1798, 303–311.CrossRefGoogle Scholar
  38. 38.
    Thomas, M. C.; Mitchell, T. W.; Harman, D. G.; Deeley, J. M.; Nealon, J. R.; Blanksby, S. J. Ozone-Induced Dissociation: Elucidation of Double Bond Position within Mass-Selected Lipid Ions. Anal. Chem. 2007, 80, 303–311.CrossRefGoogle Scholar
  39. 39.
    Ariga, T.; Tao, R. V.; Lee, B. C.; Yamawaki, M.; Yoshino, H.; Scarsdale, N. J.; Kasama, T.; Kushi, Y.; Yu, R. K. Glycolipid Composition of Human Cataractous Lenses. Characterization of Lewis-X Glycolipids. J. Biol. Chem. 1994, 269, 2667–2675.Google Scholar
  40. 40.
    Ogiso, M.; Irie, A.; Kubo, H.; Komoto, M.; Matsuno, T.; Koide, Y.; Hoshi, M. Characterization of Neutral Glycosphingolipids in Human Cataractous Lens. J. Biol. Chem. 1993, 268, 13242–13247.Google Scholar
  41. 41.
    Gurr, M. I.; Harwood, J. L.; Fraym, K. N. Lipid Biochemsitry, an Introduction; Blackwell Science: Oxford, p. 275.Google Scholar
  42. 42.
    Li, L. K.; So, L.; Spector, A. Membrane Cholesterol and Phospholipid in Consecutive Concentric Sections of Human Lenses. J. Lipid Res. 1985, 26, 600–609.Google Scholar
  43. 43.
    Roy, D.; Rosenfeld, L.; Spector, A. Lens Plasma Membrane: Isolation and Biochemical Characterization. Exp. Eye Res. 1982, 35, 113–129.CrossRefGoogle Scholar
  44. 44.
    Heeren, R. M. A.; Smith, D. F.; Stauber, J.; Kükrer-Kaletas, B.; MacAleese, L. Imaging Mass Spectrometry: Hype or Hope? J. Am. Soc. Mass Spectrom. 2009, 20, 1006–1014.CrossRefGoogle Scholar
  45. 45.
    Rujoi, M.; Jin, J.; Borchman, D.; Tang, D.; Yappert, M. C. Isolation and Lipid Characterization of Cholesterol-Enriched Fractions in Cortical and Nuclear Human Lens Fibers. Invest. Ophthalmol. Vis. Sci. 2003, 44, 1634–1642.CrossRefGoogle Scholar
  46. 46.
    Huang, L.; Grami, V.; Marrero, Y.; Tang, D.; Yappert, M. C.; Rasi, V.; Borchman, D. Human Lens Phospholipid Changes with Age and Cataract. Invest. Ophthalmol. Vis. Sci. 2005, 46, 1682–1689.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry. Published by Elsevier Inc 2010

Authors and Affiliations

  • Shane R. Ellis
    • 1
  • Chunping Wu
    • 2
  • Jane M. Deeley
    • 1
  • Xiangjia Zhu
    • 3
  • Roger J. W. Truscott
    • 3
  • Marc in het Panhuis
    • 1
  • R. Graham Cooks
    • 2
  • Todd W. Mitchell
    • 4
  • Stephen J. Blanksbya
    • 1
  1. 1.School of ChemistryUniversity of WollongongWollongongAustralia
  2. 2.Department of ChemistryPurdue UniversityWest LafayetteUSA
  3. 3.Save Sight InstituteUniversity of SydneyAustralia
  4. 4.School of Health SciencesUniversity of WollongongWollongongAustralia

Personalised recommendations