Advertisement

Traveling-wave ion mobility mass spectrometry analysis of isomeric modified peptides arising from chemical cross-linking

  • Luiz F. A. Santos
  • Amadeu H. Iglesias
  • Eduardo J. Pilau
  • Alexandre F. Gomes
  • Fabio C. Gozzo
Article

Abstract

Traveling-wave ion mobility (TWIM) coupled to mass spectrometry (MS) has emerged as a powerful tool for structural and conformational analysis of proteins and peptides, allowing the analysis of isomeric peptides (or proteins) with the same sequence but modified at different residues. This work demonstrates the use of the novel TWIM-MS technique to separate isomeric peptide ions derived from chemical cross-linking experiments, which enables the acquisition of distinct product ion spectra for each isomer, clearly indicating modification on different sites. Experiments were performed with four synthetic peptides, for which variable degrees of mobility separation were achieved. In cases of partially overlapping mobility arrival time distributions (ATDs), extracting the ATDs of fragment ions belonging to each individual isomer allowed their separation into two distinct ATDs. Accumulation over regions from the specific ATDs generates the product ion spectrum of each isomer, or a spectrum highly enriched in their fragments. The population of both modified peptide isomers was correlated with the intrinsic reactivities of different Lys residues from reactions conducted at different pH conditions.

Keywords

Drift Cell Arrival Time Distribution Mobility Separation Isomeric Peptide Disuccinimidyl Suberate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Gruis, D. B.; Price, E. M. The Nucleotide Binding Folds of the Cystic Fibrosis Transmembrane Conductance Regulator are Extracellularly Accessible. Biochemistry 1997, 36, 7739–7745.CrossRefGoogle Scholar
  2. 2.
    Patchornik, G. Purification of His-Tagged Proteins with [Desthiobiotin#BSA#EDTA] Conjugates Exhibiting Resistance to EDTA. Bioconj. Chem. 2008, 19, 673–679.CrossRefGoogle Scholar
  3. 3.
    Shell, S. M.; Hess, S.; Kvaratskhelia, M.; Zou, Y. Mass Spectrometric Identification of Lysines Involved in the Interaction of Human Replication Protein A with Single-Stranded DNA. Biochemistry 2005, 44, 971–978.CrossRefGoogle Scholar
  4. 4.
    Ioffe, M. V.; Gorbenko, G. P.; Kinnunen, P. K. J.; Tatarets, A. L.; Kolosova, O. S.; Patsenker, L. D.; Terpetsching, E. A. Tracing Lysozime-Lipid Interactions with Long-Wavelength Saquarine Dyes. J. Fluoresc. 2007, 17, 65–72.CrossRefGoogle Scholar
  5. 5.
    Fan, J.; Pope, L. E.; Vitols, K. S.; Huennekens, F. M. Affinity Labeling of Folate Transport Proteins with the N-Hydroxysuccinimide Ester of γ-Isomer of Fluorescein-Methotrexate. Biochemistry 1991, 30, 4573–4580.CrossRefGoogle Scholar
  6. 6.
    Gabant, G.; Augier, J.; Armengaud, J. Assessment of Solvent Residues Accessibility Using Three Sulfo-NHS-Biotin Reagents in Parallel: Application to Footprint Changes of a Methyltransferase Upon Binding Its Substrate. J. Mass Spectrom. 2008, 43, 360–370.CrossRefGoogle Scholar
  7. 7.
    Shkriabai, N.; Datta, S. A. K.; Zhao, Z.; Hess, S.; Rein, A.; Kvaratskhelia, M. Interactions of HIV-1 Gag with Assembly Cofactors. Biochemistry 2006, 45, 4077–4083.CrossRefGoogle Scholar
  8. 8.
    Barnhill, H. N.; Reuther, R.; Ferguson, P. L.; Dreher, T.; Wang, Q. Turnip Yellow Mosaic Virus as a Chemoaddressable Bionanoparticle. Bioconj. Chem. 2007, 18, 852–859.CrossRefGoogle Scholar
  9. 9.
    Back, J. W.; Jong, L.; Muijsers, A. O.; Koster, C. G. Chemical Cross-Linking and Mass Spectrometry for Protein Structural Modeling. J. Mol. Biol. 2003, 331, 303–313.CrossRefGoogle Scholar
  10. 10.
    Sinz, A. Chemical Cross-Linking and Mass Spectrometry to Map Three-Dimensional Protein Structures and Protein-Protein Interactions. Mass Spectrom. Rev. 2005, 25, 663–682.CrossRefGoogle Scholar
  11. 11.
    Lomant, A. J.; Fairbanks, G. Chemical Probes of Extended Biological Structures: Synthesis and Properties of the Cleavable Protein Crosslinking Reagent [35S] Dithiobis(succinimidyl propionate). J. Mol. Biol. 1976, 104, 243–261.CrossRefGoogle Scholar
  12. 12.
    Chen, Z. A.; Jawhari, A.; Fischer, L.; Buchen, C.; Tahir, S.; Kamenski, T.; Rasmussen, M.; Lariviere, L.; Bukowski-Wills, J.-C.; Nilges, M.; Cramer, P.; Rappsilber, J. Architecture of the RNA Polymerase II-TFIIF Complex Revealed By Cross-Linking and Mass Spectrometry. EMBO J. 2010, 29, 717–726.CrossRefGoogle Scholar
  13. 13.
    Tubb, M. R.; Silva, R. A. G. D.; Fang, J.; Tso, P.; Davidson, W. S. A Three-Dimensional Homology Model of Lipid-free Apolipoprotein A-IV Using Cross-Linking and Mass Spectrometry. J. Biol. Chem. 2008, 283, 17314–17323.CrossRefGoogle Scholar
  14. 14.
    Hermanson, G. T. Bioconjugate Techniques, 2nd ed.; Academic Press, Elsevier Inc.: San Diego, 2008, p. 171.Google Scholar
  15. 15.
    Guo, X.; Bandyopadhyay, P.; Schilling, B.; Young, M. M.; Fujii, N.; Aynechi, T.; Guy, R. K.; Kuntz, I. D.; Gibson, B. W. Partial Acetylation of Lysine Residues Improves Intraprotein Cross-linking. Anal. Chem. 2008, 80, 951–960.CrossRefGoogle Scholar
  16. 16.
    Madler, S.; Bich, C.; Touboul, D.; Zenobi, R. Chemical Cross-Linking with NHS Esters: A Systematic Study on Amino Acid Reactivities. J. Mass Spectrom. 2009, 44, 694–706.CrossRefGoogle Scholar
  17. 17.
    Swaim, C. L.; Smith, J. B.; Smith, D. L. Unexpected Products from the Reaction of the Synthetic Cross-Linker 3,3-Dithiobis(Sulfosuccinimidyl propionate), DTSSP with Peptides. J. Am. Soc. Mass Spectrom. 2004, 15, 736–749.CrossRefGoogle Scholar
  18. 18.
    Leavell, M. D.; Novak, P.; Behrens, C. R.; Schoeniger, J. R.; Kruppa, G. H. Strategy for Selective Chemical Cross-linking of Tyrosine and Lysine Residues. J. Am. Soc. Mass Spectrom. 2004, 15, 1604–1611.CrossRefGoogle Scholar
  19. 19.
    Schilling, B.; Row, R. H.; Gibson, B. W.; Guo, X.; Young, M. M. MS2Assign, Automated Assignment and Nomenclature of Tandem Mass Spectra of Chemically Cross-Linked Peptides. J. Am. Soc. Mass Spectrom. 2003, 14, 834–850.CrossRefGoogle Scholar
  20. 20.
    Lee, Y. J. Mass Spectrometric Analysis of Cross-Linking Sites for the Structure of Proteins and Protein Complexes. Mol. BioSyst. 2008, 4, 816–823.CrossRefGoogle Scholar
  21. 21.
    Huang, B. X.; Kim. H. Y.; Dass, C. Probing Three-Dimensional Structure of Bovine Serum Albumin by Chemical Cross-Linking and Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2004, 15, 1237–1247.CrossRefGoogle Scholar
  22. 22.
    Kalkhof, S.; Sinz, A. Chances and Pitfalls of Chemical Cross-Linking with Amine-Reactive N-hydroxysuccinimide Esters. Anal. Bioanal. Chem. 2008, 392, 305–312.CrossRefGoogle Scholar
  23. 23.
    Pimenova, T.; Nazabal, A.; Roschitzki, B.; Seebacher, J.; Rinner, O.; Zenobi, R. Epitope Mapping on Bovine Prion Protein Using Chemical Cross-Linking and Mass Spectrometry. J. Mass Spectrom. 2008, 43, 185–195.CrossRefGoogle Scholar
  24. 24.
    Iglesias, A. H.; Santos, L. F. A.; Gozzo, F. C. Collision-Induced Dissociation of Lys-Lys Intramolecular Cross-Linked Peptides. J. Am. Soc. Mass Spectrom. 2009, 4, 557–566.CrossRefGoogle Scholar
  25. 25.
    Iglesias, A. H.; Santos, L. F. A.; Gozzo, F. C. Identification of Cross-Linked Peptides by High-Resolution Precursor Ion Scan. Anal. Chem. 2010, 82, 909–916.CrossRefGoogle Scholar
  26. 26.
    King, G. J.; Jones, A.; Kobe, B.; Huber, T.; Mouradov, D.; Hume, D. A.; Ross, I. L. Identification of Disulfide-Containing Chemical Cross-Links in Proteins Using MALDI-TOF/TOF-Mass Spectrometry. Anal. Chem. 2008, 80, 5036–5043.CrossRefGoogle Scholar
  27. 27.
    Kanu, A. B.; Dwivedi, P.; Tam, M.; Matz, L.; Hill, H. H. Jr. Ion Mobility-Mass Spectrometry. J. Mass Spectrom. 2008, 43, 1–22.CrossRefGoogle Scholar
  28. 28.
    McDaniel, E. W.; Martin, D. W.; Barnes, W. S. Drift-Tube Mass Spectrometer for Studies of Low-Energy Ion-Molecule reactions. Rev. Sci. Instrum. 1962, 33, 2–7.CrossRefGoogle Scholar
  29. 29.
    Albritton, D. L.; Miller, T. M.; Martin, D. W.; McDaniel, E. W. Mobilities of Mass-Identified Ions in Hydrogen. Phys. Rev. 1968, 171, 94–102.CrossRefGoogle Scholar
  30. 30.
    McDaniel, E. W. Possible Sources of Large Error in Determinations of Ion-Molecule Reaction Rates with Drift Tube-Mass Spectrometers. J. Chem. Phys. 1970, 52, 3931–3935.CrossRefGoogle Scholar
  31. 31.
    McAfee, K. B. Jr.; Sipler, D. P.; Edelson, D. Mobilities and Reactions of Ions in Argon. Phys. Rev. 1967, 160, 130–135.CrossRefGoogle Scholar
  32. 32.
    Edelson, D.; Morrison, J. A.; McKnight, L. G.; Sipler, D. P. Interpretation of Ion-Mobility Experiments in Reacting Systems. Phys. Rev. 1967, 164, 71–75.CrossRefGoogle Scholar
  33. 33.
    Young, C. E.; Edelson, D.; Falconer, W. E. Water Cluster Ions: Rates of Formation and Decomposition of Hydrates of the Hydronium Ion. J. Chem. Phys. 1970, 53, 4295–4302.CrossRefGoogle Scholar
  34. 34.
    Karasek, F. W.; Cohen, M. J.; Carroll, D. I. Trace Studies of Alcohols in the Plasma Chromatography-Mass Spectrometer. J. Chromatogr. Sci. 1971, 9, 390–392.CrossRefGoogle Scholar
  35. 35.
    Kuk, Y.; Jarrold, M. F.; Silverman, P. J.; Bower, J. E.; Brown, W. L. Preparation and Observation of Si10 clusters on a Au(001)−(5×20) Surface. Phys. Rev. B 1989, 39, 11168–11170.CrossRefGoogle Scholar
  36. 36.
    Kemper, P. R.; Bowers, M. T. A Hybrid Double-Focusing Mass Spectrometer-High-Pressure Drift Reaction Cell to Study Thermal Energy Reactions of Mass-Selected Ions. J. Am. Soc. Mass Spectrom. 1990, 1, 197–207.CrossRefGoogle Scholar
  37. 37.
    Bowers, M. T.; Kemper, P. R.; von Helden, G.; Van Koppen, P. A. M. Gas-Phase Ion Chromatography: Transition Metal State Selection and Carbon Cluster Formation. Science 1993, 260, 1446–1451.CrossRefGoogle Scholar
  38. 38.
    Gotts, N. G.; von Helden, G.; Bowers, M. T. Carbon Cluster Anions: Structure and Growth from C5- to C62-. Int. J. Mass Spectrom. Ion Processes 1995, 149, 217–229.CrossRefGoogle Scholar
  39. 39.
    Wyttenbach, T.; Witt, M.; Bowers, M. T. On the Stability of Amino Acid Zwitterions in the Gas Phase: The Influence of Derivatization, Proton Affinity, and Alkali Ion Addition. J. Am. Chem. Soc. 2000, 122, 3458–3464.CrossRefGoogle Scholar
  40. 40.
    Srebalus, C. A.; Li, J.; Marshall, W. S.; Clemmer, D. E. Gas-Phase Separations of Electrosprayed Peptide Libraries. Anal. Chem. 1999, 71, 3918–3927.CrossRefGoogle Scholar
  41. 41.
    Thalassinos, K.; Slade, S. E.; Jennings, K. R.; Scrivens, J. H.; Giles, K.; Wildgoose, J.; Hoyes, J.; Bateman, R. H.; Bowers, M. T. Ion Mobility Mass Spectrometry of Proteins in a Modified Commercial Mass Spectrometer. Int. J. Mass Spectrom. 2004, 236, 55–63.CrossRefGoogle Scholar
  42. 42.
    Gidden, J.; Baker, E. S.; Ferzoco, A.; Bowers, M. T. Structural Motifs of DNA Complexes in the Gas Phase. Int. J. Mass Spectrom. 2005, 240, 183–193.CrossRefGoogle Scholar
  43. 43.
    Gidden, J.; Wyttenbach, T.; Jackson, A. T.; Scrivens, J. H.; Bowers, M. T. Gas-Phase Conformations of Synthetic Polymers: Poly(Ethylene Glycol), Poly(Propylene Glycol), and Poly(Tetramethylene glycol). J. Am. Chem. Soc. 2000, 122, 4692–4699.CrossRefGoogle Scholar
  44. 44.
    Kanu, A. B.; Dwivedi, P.; Tam, M.; Matz, L.; Hill, H. H. Ion Mobility-Mass Spectrometry. J. Mass Spectrom. 2008, 43, 1–22.CrossRefGoogle Scholar
  45. 45.
    Purves, R. W.; Guevremont, R.; Day, S.; Pipich, C. H.; Matyjaszczyk, M. S. Mass Spectrometric Characterization of a High-Field Asymmetric Waveform Ion Mobility Spectrometer. Rev. Sci. Instrum. 1998, 69, 4094–4105.CrossRefGoogle Scholar
  46. 46.
    Guevremont, R.; Purves, R. W. Atmospheric Pressure Ion Focusing in a High-Field Asymmetric Waveform Ion Mobility Spectrometer. Rev. Sci. Instrum. 1999, 70, 1370–1383.CrossRefGoogle Scholar
  47. 47.
    Guevremont, R. High-Field Asymmetric Waveform Ion Mobility Spectrometry: A New Tool for Mass Spectrometry. J. Chromatogr. A 2004, 1058, 3–19.CrossRefGoogle Scholar
  48. 48.
    Sacristan, E.; Solis, A. A. A Swept-Field Aspiration Condenser as an Ion-Mobility Spectrometer. IEEE Trans. Instrum. Measurement 1998, 47, 769–775.CrossRefGoogle Scholar
  49. 49.
    Solis, A. A.; Sacristan, E. Designing the Measurement Cell of a Swept-Field Differential Aspiration Condenser. Revista Mexicana de Fisica 2006, 52, 322–328.Google Scholar
  50. 50.
    Dwivedi, P.; Wu, C.; Matz, L. M.; Clowers, B. H.; Siems, W. F.; Hill, H. H. Jr. Gas-Phase Chiral Separations by Ion Mobility Spectrometry. Anal. Chem. 2006, 78, 8200–8206.CrossRefGoogle Scholar
  51. 51.
    Giles, K.; Pringle, S. D.; Worthington, K. R.; Little, D.; Wildgoose, J. L.; Bateman,R.H.ApplicationsofaTravelingWave-BasedRadio-Frequency-Only Stacked Ring Ion Guide. Rapid Commun. Mass Spectrom. 2004, 18, 2401–2414.CrossRefGoogle Scholar
  52. 52.
    Pringle, S. D.; Giles, K.; Wildgoose, J. L.; Williams, J. P.; Slade, S. E.; Thalassinos, K.; Bateman, R. H.; Bowers, M. T.; Scrivens, J. H. An Investigation of the Mobility Separation of Some Peptide and Protein Ions Using a New Hybrid Quadrupole/Traveling Wave IMS/oa-TOF instrument. Int. J. Mass Spectrom. 2007, 261, 1–12.CrossRefGoogle Scholar
  53. 53.
    Williams, J. P.; Bugarcic, T.; Habtemariam, A.; Giles, K.; Campuzano, I.; Rodger, P. M.; Sadler, P. J. Isomer Separation and Gas-Phase Configurations of Organoruthenium Anticancer Complexes: Ion Mobility Mass Spectrometry and Modeling. J. Am. Soc. Mass Spectrom. 2009, 6, 1119–1122.CrossRefGoogle Scholar
  54. 54.
    Hilton, G. R.; Thalassinos, K.; Grabenauer, M.; Sanghera, N.; Slade, S. E.; Wyttenbach, T.; Robinson, P. J.; Pinheiro, T. J. T.; Bowers, M. T.; Scrivens, J. H. Structural Analysis of Prion Proteins by Means of Drift Cell and Traveling Wave Ion Mobility Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2010, 21, 845–854.CrossRefGoogle Scholar
  55. 55.
    Scarff, C.; Patel, V. J.; Thalassinos, K.; Scrivens, J. H. Probing Hemoglobin Structure by Means of Traveling-Wave Ion Mobility Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2009, 20, 625–631.CrossRefGoogle Scholar
  56. 56.
    Smith, D. P.; Giles, K.; Bateman, R. H.; Radford, S. E.; Ashcroft, A. E. Monitoring Co-Populated Conformational States During Protein Folding Events Using Electrospray Ionization-Ion Mobility Spectrometry-Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2007, 18, 2180–2190.CrossRefGoogle Scholar
  57. 57.
    57. Van Duijn, E.; Barendregt, A.; Synowsky, S.; Versluis, C.; Heck, A. J. R. Chaperonin Complexes Monitored by Ion Mobility Mass Spectrometry. J. Am. Chem. Soc. 2009, 131, 1452–1459.CrossRefGoogle Scholar
  58. 58.
    Pukala, T. L.; Ruotolo, B. T.; Zhou, M.; Politis, A.; Stefanescu, A.; Leary, J. A.; Robinson, C. V. Subunit Architecture of Multiprotein Assemblies Determined Using Restraints from Gas-Phase Measurements. Structure 2009, 17, 1235–1243.CrossRefGoogle Scholar
  59. 59.
    Hyung, S.-J.; Robinson, C. V.; Ruotolo, B. T. Gas-Phase Unfolding and Disassembly Reveals Stability Differences in Ligand-Bound Multiprotein Complexes. Chem. Biol. 2009, 16, 382–390.CrossRefGoogle Scholar
  60. 60.
    Ruotolo, B. T.; Benesch, J. L. P.; Sandercock, A. M.; Hyung, S.-J.; Robinson, C. V. Ion Mobility-Mass Spectrometry Analysis of Large Protein Complexes. Nature Prot. 2008, 3, 1139–1152.CrossRefGoogle Scholar
  61. 61.
    Hill, H. H.; Hill, C. H.; Asbury, G. R.; Wu, C.; Matz, L. M.; Ichiye, T. Charge Location on Gas-Phase Peptides. Int. J. Mass Spectrom. 2002, 219, 23–37.CrossRefGoogle Scholar
  62. 62.
    Ruotolo, B. T.; Gillig, K. J.; Woods, A. S.; Egan, T. F.; Ugarov, M. V.; Schultz, J.; A.; Russel, D. H. Analysis of Phosphorylated Peptides by Ion Mobility-Mass Spectrometry. Anal. Chem. 2004, 76, 6727–6733.CrossRefGoogle Scholar
  63. 63.
    Thalassinos, K.; Grabenauer, M.; Slade, S. E.; Hilton, G. R.; Bowers, M. T.; Scrivens, J. H.; Characterization of Phosphorylated Peptides Using Traveling Wave-Based and Drift Cell Ion Mobility Mass Spectrometry. Anal. Chem. 2009, 81, 248–254.CrossRefGoogle Scholar
  64. 64.
    Zaia, J.; Campuzano, I.; Giles, K.; Bateman, R.; Keith, C.; Costello, C. E. Electrospray Ion Mobility Spectrometry of Isomeric Carbohydrates. Glycobiology 2006, 11, 1140–1140.Google Scholar
  65. 65.
    Benassi, M.; Corilo, Y. E.; Uria, D.; Augusti, R.; Eberlin, M. N. Recognition and Resolution of Isomeric Alkyl Anilines by Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2009, 20, 269–277.CrossRefGoogle Scholar
  66. 66.
    Campuzano, I.; Giles, K. SYNAPT G2 High Definition Mass Spectrometry: Ion Mobility Separation and Structural Elucidation of Natural Product Structural Isomers (2009). Retrieved August 13, 2010 from the website: http://www.waters.com/webassets/cms/library/docs/ 720003041en.pdf.Google Scholar
  67. 67.
    Campuzano, I.; Giles, K.; Neeson, K.; Richardson, K. SYNAPT G2 High Definition Mass Spectrometry: Separation and Collision Cross-Section Determination of Leucine and Isoleucine by Traveling Wave Ion Mobility Mass Spectrometry (2009). Retrieved August 13, 2010 from the website: http://www.waters.com/webassets/cms/library/docs/ 720003028en.pdf.Google Scholar
  68. 68.
    Riba-Garcia, I.; Giles, K.; Bateman, R. H.; Gaskell, S. J. Evidence for Structural Variants of a- and b-Type Peptide Fragment Ions Using Combined Ion Mobility/Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2008, 19, 608–613.CrossRefGoogle Scholar
  69. 69.
    Guo, X.; Bandyopadhyay, P.; Schilling, B.; Young, M. M.; Fujii, N.; Aynechi, T.; Guy, R. K.; Kuntz, I. D.; Gibson, B. W. Partial Acetylation of Lysine Residues Improves Intraprotein Cross-Linking. Anal. Chem. 2008, 80, 951–960.CrossRefGoogle Scholar
  70. 70.
    Mädler, S.; Bich, C.; Touboul, D.; Zenobi, R. Chemical Cross-Linking with NHS Esters: A Systematic Study on Amino Acid Reactivities. J. Mass Spectrom. 2009, 44, 694–706.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2010

Authors and Affiliations

  • Luiz F. A. Santos
    • 1
    • 2
  • Amadeu H. Iglesias
    • 1
    • 2
  • Eduardo J. Pilau
    • 1
    • 2
  • Alexandre F. Gomes
    • 1
    • 2
  • Fabio C. Gozzo
    • 1
    • 2
  1. 1.Institute of ChemistryUniversity of CampinasCampinas-SPBrazil
  2. 2.Instituto Nacional de Ciencia e Tecnologia de BioanaliticaSao PauloBrazil

Personalised recommendations