Enhanced characterization of singly protonated phosphopeptide ions by femtosecond laser-induced ionization/dissociation tandem mass spectrometry (fs-LID-MS/MS)

  • Scott A. Smith
  • Christine L. Kalcic
  • Kyle A. Safran
  • Paul M. Stemmer
  • Marcos Dantus
  • Gavin E. Reida


To develop an improved understanding of the regulatory role that post-translational modifications (PTMs) involving phosphorylation play in the maintenance of normal cellular function, tandem mass spectrometry (MS/MS) strategies coupled with ion activation techniques such as collision-induced dissociation (CID) and electron-transfer dissociation (ETD) are typically employed to identify the presence and site-specific locations of the phosphate moieties within a given phosphoprotein of interest. However, the ability of these techniques to obtain sufficient structural information for unambiguous phosphopeptide identification and characterization is highly dependent on the ion activation method employed and the properties of the precursor ion that is subjected to dissociation. Herein, we describe the application of a recently developed alternative ion activation technique for phosphopeptide analysis, termed femtosecond laser-induced ionization/dissociation (fs-LID). In contrast to CID and ETD, fs-LID is shown to be particularly suited to the analysis of singly protonated phosphopeptide ions, yielding a wide range of product ions including a, b, c, x, y, and z sequence ions, as well as ions that are potentially diagnostic of the positions of phosphorylation (e.g., ‘a n+1–98’). Importantly, the lack of phosphate moiety losses or phosphate group ‘scrambling’ provides unambiguous information for sequence identification and phosphorylation site characterization. Therefore, fs-LID-MS/MS can serve as a complementary technique to established methodologies for phosphoproteomic analysis.


Electron Capture Dissociation Electron Transfer Dissociation Site Assignment Phosphopeptide Analysis Electron Ionization Dissociation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

13361_2011_211202031_MOESM1_ESM.doc (1 mb)
Supplementary material, approximately 1082 KB.


  1. 1.
    Cohen, P. The Regulation of Protein Function by Multisite Phosphorylation—a 25 Year Update. Trends Biochem. Sci. 2000, 25, 596–601.CrossRefGoogle Scholar
  2. 2.
    Bode, A. M.; Dong, Z. Post-Translational Modification of p53 in Tumorigenesis. Nat. Rev. Cancer 2004, 4, 793–805.CrossRefGoogle Scholar
  3. 3.
    Mazanetz, M. P.; Fischer, P. M. Untangling τ Hyperphosphorylation in Drug Design for Neurodegenerative Diseases. Nat. Rev. Drug Discov. 2007, 6, 464–479.CrossRefGoogle Scholar
  4. 4.
    Gong, C.-X., Liu, F.; Grundke-Iqbal, I.; Iqbal, K. Dysregulation of Protein Phosphorylation/Dephosphorylation in Alzheimer’s Disease: A Therapeutic Target. J. Biomed. Biotechnol. 2006, 2006, 1–11.CrossRefGoogle Scholar
  5. 5.
    Paradela, A.; Albar, J. P. Advances in the Analysis of Protein Phosphorylation. J. Prot. Res. 2008, 7, 1809–1818.CrossRefGoogle Scholar
  6. 6.
    Boersema, P. J.; Mohammed, S.; Heck, A. J. R. Phosphopeptide Fragmentation and Analysis by Mass Spectrometry. J. Mass Spectrom. 2009, 44, 861–878.CrossRefGoogle Scholar
  7. 7.
    Palumbo, A. M.; Smith, S. A.; Kalcic, C.L.; Dantus, M.; Stemmer, P. M.; Reid, G. E. Tandem Mass Spectrometry Strategies for Phosphoproteome Analysis. Mass Spectrom. Rev. 2010, in Press.Google Scholar
  8. 8.
    Dunn, J. D.; Reid, G. E.; Bruening, M. L. Enrichment of Phosphopeptides Prior to Analysis by Mass Spectrometry. Mass Spectrom. Rev. 2010, 29, 29–54.Google Scholar
  9. 9.
    Olsen, J. V.; Blagoev, B.; Gnad, F.; Macek, B.; Kumar, C.; Mortensen, P.; Mann, M. Global, In Vivo and Site-Specific Phosphorylation Dynamics in Signaling Networks. Cell 2006, 127, 635–648.CrossRefGoogle Scholar
  10. 10.
    Beausoleil, S. A.; Villén, J.; Gerber, S. A.; Rush, J.; Gygi, S. P. A Probability-Based Approach for High-Throughput Protein Phosphorylation Analysis and Site Localization. Nat. Biotechnol. 2006, 24, 1285–1292.CrossRefGoogle Scholar
  11. 11.
    Palumbo, A. M.; Tepe, J. J.; Reid, G. E. Mechanistic Insights into the Multistage Gas-Phase Fragmentation Behavior of Phosphoserine- and Phosphothreonine-containing Peptides. J. Protein Res. 2008, 7, 771–779.CrossRefGoogle Scholar
  12. 12.
    Palumbo, A. M.; Reid, G. E. Evaluation of Gas-Phase Rearrangement and Competing Fragmentation Reactions on Protein Phosphorylation Site Assignment using CID-MS/MS and MS3. Anal. Chem. 2008, 80, 9735–9747.CrossRefGoogle Scholar
  13. 13.
    Sweet, S. M. M.; Creese, A. J.; Cooper, H. J. Strategy for the Identification of Sites of Phosphorylation in Proteins: Neutral Loss Triggered Electron Capture Dissociation. Anal. Chem. 2006, 78, 7563–7569.CrossRefGoogle Scholar
  14. 14.
    Aguiar, M.; Haas, W.; Beausoleil, S. A.; Rush, J.; Gygi, S. P. Gas-Phase Rearrangements Do Not Affect Site Localization Reliability in Phosphoproteomics Data Sets. J. Proteome Res. 2010, 9, 3103–3107.CrossRefGoogle Scholar
  15. 15.
    Mischerikow, N.; Altelaar, A. F. M.; Navarro, J. D.; Mohammed, S.; Heck, A. Comparative Assessment of Site Assignments in CID and ETD Spectra of Phosphopeptides Discloses Limited Relocation of Phosphate Groups. Mol. Cell. Proteom. 2010, in press; doi:10.1074/mcp. M900619-MCP200.Google Scholar
  16. 16.
    Sweet, S. M. M.; Bailey, C. M.; Cunningham, D. L.; Heath, J. K.; Cooper, H. J. Large Scale Localization of Protein Phosphorylation by Use of Electron Capture Dissociation Mass Spectrometry. Mol. Cell. Proteom. 2009, 8, 904–912.CrossRefGoogle Scholar
  17. 17.
    Syka, J. E. P.; Coon, J. J.; Schroeder, M. J.; Shabanowitz, J.; Hunt, D. F. Peptide and Protein Sequence Analysis by Electron Transfer Dissociation Mass Spectrometry. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 9528–9533.CrossRefGoogle Scholar
  18. 18.
    Molina, H.; Horn, D. M.; Tang, N.; Mathivanan, S.; Pandey, A. Global Proteomic Profiling of Phosphopeptides Using Electron Transfer Dissociation Tandem Mass Spectrometry. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 2199–2204.CrossRefGoogle Scholar
  19. 19.
    Swaney, D. L.; Wenger, C. D.; Thomson, J. A.; Coon, J. J. Human Embryonic Stem Cell Phosphoproteome Revealed by Electron Transfer Dissociation Tandem Mass Spectrometry. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 995–1000.CrossRefGoogle Scholar
  20. 20.
    Chalkley, R. J.; Medzihradszky, K. F.; Lynn, A. J.; Baker, P. R.; Burlingame, A. L. Statistical Analysis of Peptide Electron Transfer Dissociation Fragmentation Mass Spectrometry. Anal. Chem. 2010, 82, 579–584.CrossRefGoogle Scholar
  21. 21.
    McLuckey, S. A.; Huang, T. Y. Ion/Ion Reactions: New Chemistry for Analytical MS. Anal. Chem. 2009, 81, 8669–8676.CrossRefGoogle Scholar
  22. 22.
    Jackson, S. N.; Wang, H. Y. J.; Yergey, A.; Woods, A. S. Phosphate Stabilization of Intermolecular Interactions. J. Proteome Res. 2006, 5, 122–126.CrossRefGoogle Scholar
  23. 23.
    Swaney, D. L.; McAlister, G. C.; Wirtala, M.; Schwartz, J. C.; Syka, J. E. P.; Coon, J. J. Supplemental Activation Method for High-Efficiency Electron-Transfer Dissociation of Doubly Protonated Peptide Precursors. Anal. Chem. 2007, 79, 477–485.CrossRefGoogle Scholar
  24. 24.
    Brodbelt, J. S.; Wilson, J. J.; Infrared Multiphoton Dissociation in Quadrupole Ion Traps. Mass Spectrom. Rev. 2009, 28, 390–424.CrossRefGoogle Scholar
  25. 25.
    Reilly, J. P. Ultraviolet Photofragmentation of Biomolecular Ions. Mass Spectrom. Rev. 2009, 28, 425–447.CrossRefGoogle Scholar
  26. 26.
    Ly, T.; Julian, R. R. Ultraviolet Photodissociation: Developments Towards Applications for Mass-Spectrometry-Based Proteomics. Angew. Chem. Int. Ed. 2009, 48, 7130–7137.CrossRefGoogle Scholar
  27. 27.
    Shin, Y. S.; Moon, J. H.; Kim, M. S. Observation of Phosphorylation Site-Specific Dissociation of Singly Protonated Phosphopeptides. J. Am. Soc. Mass Spectrom. 2010, 21, 53–59.CrossRefGoogle Scholar
  28. 28.
    Kim, T.-Y.; Reilly, J. P. Time-Resolved Observation of Product Ions Generated by 157 nm Photodissociation of Singly Protonated Phosphopeptides. J. Am. Soc. Mass Spectrom. 2009, 20,2334–23411.CrossRefGoogle Scholar
  29. 29.
    Kalcic, C. L.; Gunaratne, T.; Jones, A. D.; Dantus, M.; Reid, G. E. Femtosecond Laser-induced Ionization/Dissociation of Protonated Peptides. J. Am. Chem. Soc. 2009, 131, 940–942.CrossRefGoogle Scholar
  30. 30.
    Zewail, A. H. Femtochemistry: Atomic-Scale Dynamics of the Chemical Bond Using Ultrafast Laser. Angew. Chem. Int. Ed. 2000, 39, 2586–2631.CrossRefGoogle Scholar
  31. 31.
    Budnik, B. A.; Tsybin, Y. O.; Hakansson, P.; Zubarev, R. A. Ionization Energies of Multiply Protonated Polypeptides Obtained by Tandem Ionization in Fourier Transform Mass Spectrometers. J. Mass Spectrom. 2002, 37, 1141–1144.CrossRefGoogle Scholar
  32. 32.
    Cook, S. L.; Collin, O. L.; Jackson, G. P. Metastable Atom-Activated Dissociation Mass Spectrometry: Leucine/Isoleucine Differentiation and Ring Cleavage of Proline Residues. J. Mass Spectrom. 2009, 44, 1211–1223.CrossRefGoogle Scholar
  33. 33.
    Berkout, V. D.; Doroshenko, V. M. Fragmentation of Phosphorylated and Singly Charged Peptide Ions Via Interaction with Metastable Atoms. Int. J. Mass Spectrom. 2008, 278, 150–157.CrossRefGoogle Scholar
  34. 34.
    Coello, Y.; Lozovoy, V. V.; Gunaratne, T. C.; Xu, B.; Borukhovich, I.; Tseng, C-h.; Weinacht, T.; Dantus, M. Interference Without an Interferometer: A Different Approach to Measuring, Compressing, and Shaping Ultrashort Laser Pulses. J. Opt. Soc. Am. B 2008, 25, A140-A150.CrossRefGoogle Scholar
  35. 35.
    Medzihradszky, K. F.; Burlingame, A. L. The Advantages and Versatility of a High-Energy Collision-Induced Dissociation-Based Strategy for the Sequence and Structural Determination of Proteins. Methods 1994, 6, 284–303.CrossRefGoogle Scholar
  36. 36.
    Laskin, J.; Bailey, T. H.; Futrell, J. H. Shattering of Peptide Ions on Self-Assembled Monolayer Surfaces. J. Am. Chem. Soc. 2003, 125, 1625–1632.CrossRefGoogle Scholar
  37. 37.
    Cui, W. D.; Thompson, M. S.; Reilly, J. P. Pathways of Peptide Ion Fragmentation Induced by Vacuum Ultraviolet Light. J. Am. Soc. Mass Spectrom. 2005, 16, 1384–1398.CrossRefGoogle Scholar
  38. 38.
    Fung, Y. M. E.; Adams, C. M.; Zubarev, R. A. Electron Ionization Dissociation of Singly and Multiply Charged Peptides. J. Am. Chem. Soc. 2009, 131, 9977–9985.CrossRefGoogle Scholar
  39. 39.
    Cooper, H. J.; Hudgins, R. R.; Hakansson, K.; Marshall, A. G. Characterization of Amino Acid Side Chain Losses in Electron Capture Dissociation. J. Am. Soc. Mass Spectrom. 2002, 13, 241–249.CrossRefGoogle Scholar
  40. 40.
    Good, D. M.; Wenger, C. D.; McAlister, G. C.; Bai, D. L.; Hunt, D. F.; Coon, J. J. Post-Acquisition ETD Spectral Processing for Increased Peptide Identifications. J. Am. Soc. Mass Spectrom. 2009, 8, 1435–1440.CrossRefGoogle Scholar
  41. 41.
    Kjeldsen, F.; Silivram, O. A.; Zubarev, R. A. Zwitterionic States in Gas-Phase Polypeptide Ions Revealed by 157-nm Ultra-Violet Photodissociation. Chem. Eur. J. 2006, 12, 7920–7928.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2010

Authors and Affiliations

  • Scott A. Smith
    • 4
  • Christine L. Kalcic
    • 4
  • Kyle A. Safran
    • 4
  • Paul M. Stemmer
    • 1
  • Marcos Dantus
    • 4
    • 2
  • Gavin E. Reida
    • 4
    • 3
  1. 1.Institute of Environmental Health SciencesWayne State UniversityDetroitUSA
  2. 2.Department of PhysicsMichigan State UniversityEast LansingUSA
  3. 3.Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingUSA
  4. 4.Department of ChemistryMichigan State UniversityEast LansingUSA

Personalised recommendations