MALDI imaging and profiling MS of higher mass proteins from tissue

  • Alexandra van Remoortere
  • René J. M. van Zeijl
  • Nico van den Oever
  • Julien Franck
  • Rémi Longuespée
  • Maxence Wisztorski
  • Michel Salzet
  • André M. Deelder
  • Isabelle Fournier
  • Liam A. McDonnell
Article

Abstract

MALDI imaging and profiling mass spectrometry of proteins typically leads to the detection of a large number of peptides and small proteins but is much less successful for larger proteins: most ion signals correspond to proteins of m/z < 25,000. This is a severe limitation as many proteins, including cytokines, growth factors, enzymes, and receptors have molecular weights exceeding 25 kDa. The detector technology typically used for protein imaging, a microchannel plate, is not well suited to the detection of high m/z ions and is prone to detector saturation when analyzing complex mixtures. Here we report increased sensitivity for higher mass proteins by using the CovalX high mass HM1 detector (Zurich, Switzerland), which has been specifically designed for the detection of high mass ions and which is much less prone to detector saturation. The results demonstrate that a range of different sample preparation strategies enable higher mass proteins to be analyzed if the detector technology maintains high detection efficiency throughout the mass range. The detector enables proteins up to 70 kDa to be imaged, and proteins up to 110 kDa to be detected, directly from tissue, and indicates new directions by which the mass range amenable to MALDI imaging MS and MALDI profiling MS may be extended.

Keywords

MALDI High Mass Matrix Solution Image Mass Spectrometry HFIP 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

13361_2010_211101922_MOESM1_ESM.doc (176 kb)
Supplementary material, approximately 181 KB.

References

  1. 1.
    McDonnell, L. A.; Corthals, G. L.; Willems, S. M.; van Remoortere, A. van Zeijl, R. J. M.; Deelder, A. M. Peptide and Protein Imaging Mass Spectrometry in Cancer Research. J. Proteom. 2010, epub ahead of print.Google Scholar
  2. 2.
    McDonnell, L. A.; Heeren, R. M. A. Imaging Mass Spectrometry. Mass Spectrom. Rev. 2007, 26, 606–643.CrossRefGoogle Scholar
  3. 3.
    Chaurand, P.; Latham, J. C.; Lane, K. B.; Mobley, J. A.; Polosukhin, V. V.; Wirth, P. S.; Nanney, L. B.; Caprioli, R. M. Imaging Mass Spectrometry of Intact Proteins from Alcohol-Preserved Tissue Specimens: Bypassing Formalin Fixation. J. Proteome Res. 2008, 7, 3543–3555.CrossRefGoogle Scholar
  4. 4.
    Cornett, D. S.; Reyzer, M. L.; Chaurand, P.; Caprioli, R. M. MALDI Imaging Mass Spectrometry: Molecular Snapshots of Biochemical Systems. Nat. Methods 2007, 4, 828–833.CrossRefGoogle Scholar
  5. 5.
    Franck, J.; Arafah, K.; Elayed, M.; Bonnel, D.; Vergara, D.; Jacquet, A.; Vinatier, D.; Wisztorski, M.; Day, R.; Fournier, I.; Salzet, M. MALDI Imaging Mass Spectrometry: State of the Art Technology in Clinical Proteomics. Mol. Cell. Proteom. 2009, 8, 2023–2033.CrossRefGoogle Scholar
  6. 6.
    Seeley, E. H.; Caprioli, R. M. Molecular Imaging of Proteins in Tissues by Mass Spectrometry. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 18126–18131.CrossRefGoogle Scholar
  7. 7.
    Stoeckli, M.; Staab, D.; Schweitzer, A. Compound and Metabolite Distribution Measured by MALDI Mass Spectrometric Imaging in Whole-Body Tissue Sections. Int. J. Mass Spectrom. 2007, 260, 195–202.CrossRefGoogle Scholar
  8. 8.
    Burnum, K. E.; Cornett, D. S.; Puolitaival, S. M.; Milne, S. B.; Myers, D. S.; Tranguch, S.; Brown, H. A.; Dey, S. K.; Caprioli, R. M. Spatial and Temporal Alterations of Phospholipids Determined by Mass Spectrometry During Mouse Embryo Implantation. J. Lipid Res. 2009, 50, 2290–2298.CrossRefGoogle Scholar
  9. 9.
    Djidja, M. C.; Claude, E.; Snel, M. F.; Scriven, P.; Francese, S.; Carolan, V.; Clench, M. R. MALDI-Ion Mobility Separation-Mass Spectrometry Imaging of Glucose-Regulated Protein 78 kDa (Grp78) in Human Formalin-Fixed, Paraffin-Embedded Pancreatic Adenocarcinoma Tissue Sections. J. Proteome Res. 2009, 8, 4876–4884.CrossRefGoogle Scholar
  10. 10.
    Scholz, B.; Sköld, K.; Kultima, K.; Fernandez, C.; Waldemarson, S.; Savitski, M.; Svensson, M.; Borén, M.; Andrén, P.; Zubarev, R.; James, P. Impact of Temperature-Dependent Sampling Procedures in Proteomics and Peptidomics—a Characterization of the Liver and Pancreas Post-Mortem Degradome. Mol. Cell. Proteom. 2010, in press.Google Scholar
  11. 11.
    Grey, A. C.; Chaurand, P.; Caprioli, R. M.; Schey, K. L. MALDI Imaging Mass Spectrometry of Integral Membrane Proteins from Ocular Lens and Retinal Tissue. J. Proteom. Res. 2009, 8, 3278–3283.CrossRefGoogle Scholar
  12. 12.
    Leinweber, B. D.; Tsaprailis, G.; Monks, T. J.; Lau, S. S. Improved MALDI-TOF Imaging Yields Increased Protein Signals at High Molecular Mass. J. Am. Soc. Mass Spectrom. 2009, 20, 89–95.CrossRefGoogle Scholar
  13. 13.
    Franck, J.; Longuespée, R.; Wisztorski, M.; Remoortere, A. V.; Zeijl, R. V.; Deelder, A.; Salzet, M.; McDonnell, L.; Fournier I. MALDI Mass Spectrometry Imaging of Proteins Exceeding 30,000 Dalton. Med. Sci. Monit. 2010, 16, epub ahead of print.Google Scholar
  14. 14.
    Chen, X.; Westphall, M. S.; Smith, L. M. Mass Spectrometric Analysis of DNA Mixtures: Instrumental Effects Responsible for Decreased Sensitivity with Increasing Mass. Anal. Chem. 2003, 75, 5944–5952.CrossRefGoogle Scholar
  15. 15.
    Gilmore, I. S.; Seah, M. P. Ion detection Efficiency in SIMS: Dependencies on Energy, Mass, and Composition for MicroChannel Plates Used in Mass Spectrometry. Int. J. Mass Spectrom. 2000, 202, 217–229.CrossRefGoogle Scholar
  16. 16.
    Coeck, S.; Beck, M.; Golovko, B.; Delauré, V. V.; Herbane, M.; Lindroth, A.; Kopecky, S.; Kozlov, V. Y.; Kraev, I. S.; Phalet, T.; Severijns, N. Microchannel Plate Response to High-Intensity Ion Bunches. Nucl. Instrum. Methods A 2006, 557, 516–522.CrossRefGoogle Scholar
  17. 17.
    Westman, A.; Brinkmalm, G.; Barofsky, D. F. MALDI Induced Saturation Effects in Chevron MicroChannel Plate Detectors. Int. J. Mass Spectrom. Ion Processes 1997, 169/170, 79–87.CrossRefGoogle Scholar
  18. 18.
    McDonnell, L. A.; van Remoortere, A.; van Zeijl, R. J. M.; Deelder, A. M. Mass Spectrometry Image Correlation: Quantifying Colocalization. J. Proteome Res. 2008, 7, 3619–3627.CrossRefGoogle Scholar
  19. 19.
    Norris, J. L.; Cornett, D. S.; Mobley, J. A.; Andersson, M.; Seeley, E. H.; Chaurand, P.; Caprioli, R. M. Processing MALDI Mass Spectra to Improve Mass Spectral Direct Tissue Analysis. Int. J. Mass Spectrom. 2007, 260, 212–221.CrossRefGoogle Scholar
  20. 20.
    Spengler, B.; Kirsch, D.; Kaufmann, R.; Karas, M.; Hillenkamp, F.; Giessmann, U. The Detection of Large Molecules in Matrix-Assisted UV-Laser Desorption. Rapid Commun. Mass Spectrom. 1990, 4, 301–305.CrossRefGoogle Scholar
  21. 21.
    Berkenkamp, S.; Kirpekar, F.; Hillenkamp, F. Infrared MALDI Mass Spectrometry of Large Nucleic Acids. Science 1998, 281, 260–262.CrossRefGoogle Scholar
  22. 22.
    Berkenkamp, S.; Menzel, C.; Karas, M.; Hillenkamp, F. Performance of Infrared Matrix-assisted Laser Desorption/Ionization Mass Spectrometry with Lasers Emitting in the 3 ím Wavelength Range. Rapid Commun. Mass Spectrom. 1997, 11, 1399–1406.CrossRefGoogle Scholar
  23. 23.
    Wenzel, R. J.; Matter, U.; Schultheis, L.; Zenobi, R. Analysis of Megadalton Ions Using Cryodetection MALDI Time-of-Flight Mass Spectrometry. Anal. Chem. 2005, 77, 4329–4337.CrossRefGoogle Scholar
  24. 24.
    Yanes, O.; Avilés, F. X.; Wenzel, R.; Nazabal, A.; Zenobi, R.; Calvete, J. J. Proteomic Profiling of a Snake Venom Using High Mass Detection MALDI-TOF Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2007, 18, 600–606.CrossRefGoogle Scholar
  25. 25.
    Wenzel, R. J.; Kern, S.; Zenobi, R. Proceedings of the 54th ASMS Conference on Mass Spectrometry and Allied Topics; Seattle, WA, May, 2006.Google Scholar
  26. 26.
    Mainini, V.; Angel, P.; Caprioli, R. M. Proceedings of the 58th ASMS Conference on Mass Spectrometry and Allied Topics; Salt Lake City, UT, May, 2010.Google Scholar
  27. 27.
    Lemaire, R.; Wisztorski, M.; Desmons, A.; Tabet, J. C.; Day, R.; Salzet, M.; Fournier, I. MALDI-MS Direct Tissue Analysis of Proteins: Improving Signal Sensitivity Using Organic Treatments. Anal. Chem. 2006, 78, 7145–7153.CrossRefGoogle Scholar
  28. 28.
    Schwartz, S. A.; Reyzer, M. L.; Caprioli, R. M. Direct Tissue Analysis Using Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry: Practical Aspects of Sample Preparation. J. Mass Spectrom. 2003, 38, 699–708.CrossRefGoogle Scholar
  29. 29.
    Seeley, E. H.; Oppenheimer, S. R.; Mi, D.; Chaurand, P.; Caprioli, R. M. Enhancement of Protein Sensitivity for MALDI Imaging Mass Spectrometry After Chemical Treatment of Tissue Sections. J. Am. Soc. Mass Spectrom. 2008, 19, 1069–1077.CrossRefGoogle Scholar
  30. 30.
    Mangé, A.; Chaurand, P.; Perrochia, H.; Roger, P.; Caprioli, R. M.; Solassol, J. Liquid Chromatography-Tandem and MALDI Imaging Mass Spectrometry Analyses of RCL2/CS100-Fixed, Paraffin-Embedded Tissues: Proteomics Evaluation of an Alternate Fixative for Biomarker Discovery. J. Proteome Res. 2009, 8, 5619–5628.CrossRefGoogle Scholar
  31. 31.
    Milzani, A.; Rossi, R.; Simplicio, P. D.; Giustarini, D.; Colombo, R.; DalleDonne, I. The Oxidation Produced by Hydrogen Peroxide on Ca-ATP-G-Actin. Protein Sci. 2000, 9, 1774–1782.CrossRefGoogle Scholar
  32. 32.
    Kim, Y. H.; Berry, A. H.; Spencer, D. S.; Stites, W. E. Comparing the Effect on Protein Stability of Methionine Oxidation Versus mutagenesis: steps toward engineering oxidative resistance in proteins. Protein Eng. 2001, 14, 343–347.CrossRefGoogle Scholar
  33. 33.
    Bahr, U.; Stahl-Zeng, J.; Gleitsmann, E.; Karas, M. Delayed Extraction Time-of-flight MALDI Mass Spectrometry of Proteins above 25,000 Da. J. Mass Spectrom. 1997, 32, 1111–1116.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2010

Authors and Affiliations

  • Alexandra van Remoortere
    • 1
  • René J. M. van Zeijl
    • 1
  • Nico van den Oever
    • 2
  • Julien Franck
    • 3
  • Rémi Longuespée
    • 3
  • Maxence Wisztorski
    • 3
  • Michel Salzet
    • 3
  • André M. Deelder
    • 1
  • Isabelle Fournier
    • 3
  • Liam A. McDonnell
    • 1
  1. 1.Biomolecular Mass Spectrometry Unit, Department of ParasitologyLeiden University Medical CenterLeidenThe Netherlands
  2. 2.Hogeschool LeidenLeidenThe Netherlands
  3. 3.Université de Lillel, CNRS-FRE 3249, MALDI Imaging TeamLaboratoire de Neuroimmunologie et Neurochimie EvolutivesVilleneuve d’AscqFrance

Personalised recommendations