Quantifying labile protein—Ligand interactions using electrospray ionization mass spectrometry

  • Amr El-Hawiet
  • Elena N. Kitova
  • Lan Liu
  • John S. Klassen


A new electrospray ionization mass spectrometry (ES-MS) approach for quantifying protein—ligand complexes that are prone to in-source (gas-phase) dissociation is described. The method, referred to here as the reference ligand ES-MS method, is based on the direct ES-MS assay and competitive ligand binding. A reference ligand (Lref), which binds specifically to the protein (P), at the same binding site as the ligand (L) of interest, with known affinity and forms a stable protein—ligand complex in the gas phase, is added to the solution. The fraction of P bound to Lref, which is determined directly from the ES mass spectrum, is sensitive to the fraction of P bound to L in solution and enables the affinity of P for L to be determined. A mathematical framework for the implementation of the method in cases where P has one or two specific ligand binding sites is given. Affinities of two carbohydrate-binding proteins, a single chain fragment of a monoclonal antibody and the lectin concanavalin A, for monosaccharide ligands are reported and the results are shown to agree with values obtained using isothermal titration calorimetry.


Ligand Complex Electrospray Ionization Mass Spectrometry Isothermal Titration Calorimetry Reference Ligand Single Chain Fragment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Daniel, J. M.; Friess, S. D.; Rajagopalan, S.; Wendt, S.; Zenobi, R. Quantitative Determination of Noncovalent Binding Interactions Using Soft Ionization Mass Spectrometry. Int. J. Mass Spectrom. 2002, 216, 1–27.CrossRefGoogle Scholar
  2. 2.
    Schug, K. A. Solution Phase Enantioselective Recognition and Discrimination by Electrospray Ionization-Mass Spectrometry: State-of-the-Art Methods and an Eye Towards Increased Throughput Measurements. Comb. Chem. High Throughput Screen. 2007, 10, 301–316.CrossRefGoogle Scholar
  3. 3.
    Heck, A. J. R.; Van Den Heuvel, R. H. H. Investigation of Intact Protein Complexes by Mass Spectrometry. Mass Spectrom. Rev. 2004, 23, 368–389.CrossRefGoogle Scholar
  4. 4.
    Wang, W.; Kitova, E. N.; Klassen, J. S. Influence of Solution and Gas Phase Processes on Protein-Carbohydrate Binding Affinities Determined by Nanoelectrospray Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry. Anal. Chem. 2003, 75, 4945–4955.CrossRefGoogle Scholar
  5. 5.
    Shoemaker, G. K.; Soya, N.; Palcic, M. M.; Klassen, J. S. Temperature-Dependent Cooperativity in Donor-Acceptor Substrate Binding to the Human Blood Group Glycosltransferases. Glycobiology 2008, 18, 587–592.CrossRefGoogle Scholar
  6. 6.
    Soya, N.; Shoemaker, G. K.; Palcic, M. M.; Klassen, J. S. Comparative Study of Substrate and Product Binding to the Human ABO(H) Blood Group Glycosyltransferases. Glycobiology 2009, 19, 1224–1234.CrossRefGoogle Scholar
  7. 7.
    Rademacher, C.; Shoemaker, G. K.; Kim, H.-S.; Zheng, R. B.; Taha, H.; Liu, C.; Nacario, R. C.; Schriemer, D. C.; Klassen, J. S.; Peters, T.; Lowary, T. L. Ligand Specificity of CS-35, a Monoclonal Antibody That Recognizes Mycobacterial Lipoarabinomannan. A Model System for Oligofuranoside-Protein Recognition. J. Am. Chem. Soc. 2007, 129, 10489–10502.CrossRefGoogle Scholar
  8. 8.
    Jorgensen, T. J. D.; Roepstorff, P.; Heck, A. J. R. Direct Determination of Solution Binding Constants for Noncovalent Complexes Between Bacterial Cell Wall Peptide Analogues and Vancomycin Group Antibiotics by Electrospray Ionization Mass Spectrometry. Anal. Chem. 1998, 70, 4427–4432.CrossRefGoogle Scholar
  9. 9.
    Jecklin, M. C.; Touboul, D.; Bovet, C.; Wortmann, A.; Zenobi, R. Which Electrospray-Based Ionization Method Best Reflects Protein-Ligand Interactions Found in Solution? A Comparison of ESI, nanoESI, and ESSI for the Determination of Dissociation Constants with Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2008, 19, 332–343.CrossRefGoogle Scholar
  10. 10.
    Yu, Y. H.; Kirkup, C. E.; Pi, N.; Leary, J. A. Characterization of Noncovalent Protein—Ligand Complexes and Associated Enzyme Intermediates of GlcNAc-6-O-Sulfotransferase by Electrospray Ionization FT-ICR Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2004, 15, 1400–1407.CrossRefGoogle Scholar
  11. 11.
    Van Dongen, W. D.; Heck, A. J. R. Binding of Selected Carbohydrates to apo-Concanavalin A Studied by Electrospray Ionization Mass Apectrometry. Analyst 2000, 125, 583–589.CrossRefGoogle Scholar
  12. 12.
    Sun, J.; Kitova, E. N.; Klassen, J. S. Method for Stabilizing Protein—Ligand Complexes in Nanoelectrospray Ionization Mass Spectrometry. Anal. Chem. 2007, 79, 416–425.CrossRefGoogle Scholar
  13. 13.
    Clark, S. M.; Konermann, L. Determination of Ligand—Protein Dissociation Constants by Electrospray Mass Spectrometry-Based Diffusion Measurements. Anal. Chem. 2004, 76, 7077–7083.CrossRefGoogle Scholar
  14. 14.
    Robinson, C. V.; Chung, E. W.; Kragelund, B. B.; Knudsen, J.; Aplin, R. T.; Poulsen, F. M.; Dobson, C. M. Probing the Nature of Noncovalent Interactions by Mass Spectrometry. A study of Protein-CoA Ligand Binding and Assembly. J. Am. Chem. Soc. 1996, 118, 8646–8653.CrossRefGoogle Scholar
  15. 15.
    Bagal, D.; Kitova, E. N.; Liu, L.; El-Hawiet, A.; Schnier, P. D.; Klassen, J. S. Gas Phase Stabilization of Noncovalent Protein Complexes Formed by Electrospray Ionization. Anal. Chem. 2009, 81, 7801–7806.CrossRefGoogle Scholar
  16. 16.
    Zdanov, A.; Bundle, D. R.; Deng, S.-J.; MacKenzie, C. R.; Narang, S. A.; Young, M. N.; Cygler, M. Structure of a Single-Chain Antibody Variable Domain (fv) Fragment Complexed with a Carbohydrate Antigen at 1.7 Å Resolution. Proc. Natl. Acad. Sci. U.S.A. 1994, 91, 6423–6427.CrossRefGoogle Scholar
  17. 17.
    Bundle, D. R.; Eichler, E.; Gidney, M. A. J.; Meldal, M.; Ragauskas, A.; Sigurskjold, B. W.; Sinnott, B.; Watson, D. C.; Yaguchi, M.; Young, N. M. Molecular Recognition of a Salmonella trisaccharide Epitope by Monoclonal Antibody Sel55-4. Biochemistry 1994, 33, 5172–5182.CrossRefGoogle Scholar
  18. 18.
    Castro, S.; Duff, M.; Snyder, N. L.; Morton, M.; Kumar, C. V.; Peezuh, M. W. Recognition of Septanose Carbohydrates by Concanavalin A. Org. Biomol. Chem. 2005, 3, 3869–3872.CrossRefGoogle Scholar
  19. 19.
    Sun, J.; Kitova, E. N.; Wang, W.; Klassen, J. S. Method for Distinguishing Specific and Nonspecific Protein—Ligand Complexes in Nanoelectrospray Ionization Mass Spectrometry. Anal. Chem. 2006, 78, 3010–3018.CrossRefGoogle Scholar
  20. 20.
    Mandal, D. K.; Brewer, C. F. Differences in the Binding Affinities of Dimeric Concanavalin-a (Including Acetyl and Succinyl Derivatives) and Tetrameric Concanavalin-a with Large Oligomannose-Type Glycopeptides. Biochemistry 1993, 32, 5116–5120.CrossRefGoogle Scholar
  21. 21.
    Loris, R.; Maes, D.; Poortmans, F.; Wyns, L.; Bouckaert, J. A Structure of the Complex Between Concanavalin a and Methyl-3,6-di-O-(α-D-Mannopyranosyl)-α-D-Pyranoside Reveals Two Binding Modes. J. Biol. Chem. 1996, 271, 30614–30618.CrossRefGoogle Scholar
  22. 22.
    de Kloe, G. E.; Bailey, D.; Leurs, R.; de Elch, I. J. P. Transforming Fragments into Candidates: Small Becomes Big in Medicinal Chemistry. Drug Discov. Today 2009, 14, 630–646.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2010

Authors and Affiliations

  • Amr El-Hawiet
    • 1
  • Elena N. Kitova
    • 1
  • Lan Liu
    • 1
  • John S. Klassen
    • 1
  1. 1.Alberta Ingenuity Centre for Carbohydrate Science, Department of ChemistryUniversity of AlbertaEdmontonCanada

Personalised recommendations