Does chemical cross-linking with NHS esters reflect the chemical equilibrium of protein-protein noncovalent interactions in solution?

  • Stefanie Mädler
  • Markus Seitz
  • John Robinson
  • Renato ZenobiEmail author


Chemical cross-linking in combination with mass spectrometry has emerged as a powerful tool to study noncovalent protein complexes. Nevertheless, there are still many questions to answer. Does the amount of detected cross-linked complex correlate with the amount of protein complex in solution? In which concentration and affinity range is specific cross-linking possible? To answer these questions, we performed systematic cross-linking studies with two complexes, using the N-hydroxysuccinimidyl ester disuccinimidyl suberate (DSS): (1) NCoA-1 and mutants of the interacting peptide STAT6Y, covering a KD range of 30 nM to >25 μM, and (2) α-thrombin and basic pancreatic trypsin inhibitor (BPTI), a system that shows a buffer-dependent KD value between 100 and 320 μM. Samples were analyzed by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). For NCoA-1· STAT6Y, a good correlation between the amount of cross-linked species and the calculated fraction of complex present in solution was observed. Thus, chemical cross-linking in combination with MALDI-MS can be used to rank binding affinities. For the mid-affinity range up to about KD ≈ 25 μM, experiments with a nonbinding peptide and studies of the concentration dependence showed that only specific complexes undergo cross-linking with DSS. To study in which affinity range specific cross-linking can be applied, the weak α-thrombin · BPTI complex was investigated. We found that the detected complex is a nonspecifically cross-linked species. Consequently, based on the experimental approach used in this study, chemical cross-linking is not suitable for studying low-affinity complexes with KD ≫ 25 μM.


Thrombin Melittin MALDI Mass Spectrum Coactivator Protein Basic Pancreatic Trypsin Inhibitor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kleanthous, C. Protein-Protein Recognition; Oxford University Press: Oxford, New York, 2000; p. 4.Google Scholar
  2. 2.
    Vaynberg, J.; Qin, J. Weak Protein-Protein Interactions as Probed by NMR Spectroscopy. Trends Biotechnol. 2006, 24, 22–27.CrossRefGoogle Scholar
  3. 3.
    Sinz, A. Chemical Cross-Linking and Mass Spectrometry for Mapping Three-Dimensional Structures of Proteins and Protein Complexes. J. Mass Spectrom. 2003, 38, 1225–1237.CrossRefGoogle Scholar
  4. 4.
    Sinz, A. Chemical Cross-Linking and Mass Spectrometry to Map Three-Dimensional Protein Structures and Protein-Protein Interactions. Mass Spectrom. Rev. 2006, 25, 663–682.CrossRefGoogle Scholar
  5. 5.
    Farmer, T. B.; Caprioli, R. M. Assessing the Multimeric States of Proteins: Studies Using Laser Desorption Mass Spectrometry. Biol. Mass Spectrom. 1991, 20, 796–800.CrossRefGoogle Scholar
  6. 6.
    Farmer, T. B.; Caprioli, R. M. Determination of Protein-Protein Interactions by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. J. Mass Spectrom. 1998, 33, 697–704.CrossRefGoogle Scholar
  7. 7.
    Nazabal, A.; Wenzel, R.; Zenobi, R. Immunoassays with Direct Mass Spectrometric Detection. Anal. Chem. 2006, 78, 3562–3570.CrossRefGoogle Scholar
  8. 8.
    Pimenova, T.; Pereira, C. P.; Schaer, D. J.; Zenobi, R. Characterization of High Molecular Weight Multimeric States of Human Haptoglobin and Hemoglobin-Based Oxygen Carriers by High-Mass MALDI MS. J. Sep. Sci. 2009, 32, 1224–1230.CrossRefGoogle Scholar
  9. 9.
    Lomant, A. J.; Fairbanks, G. Chemical Probes of Extended Biological Structures: Synthesis and Properties of the Cleavable Protein Cross-Linking Reagent [35S]Dithiobis(Succinimidyl Propionate). J. Mol. Biol. 1976, 104, 243–261.CrossRefGoogle Scholar
  10. 10.
    Madler, S.; Bich, C.; Touboul, D.; Zenobi, R. Chemical Cross-Linking with NHS Esters: A Systematic Study on Amino Acid Reactivities. J. Mass Spectrom. 2009, 44, 694–706.CrossRefGoogle Scholar
  11. 11.
    Kalkhof, S.; Sinz, A. Chances and Pitfalls of Chemical Cross-Linking with Amine-Reactive N-Hydroxysuccinimide Esters. Anal. Bioanal. Chem. 2008, 392, 305–312.CrossRefGoogle Scholar
  12. 12.
    Bich, C.; Scott, M.; Panagiotidis, A.; Wenzel, R. J.; Nazabal, A.; Zenobi, R. Characterization of Antibody-Antigen Interactions: Comparison Between Surface Plasmon Resonance Measurements and High-Mass Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. Analyt. Biochem. 2008, 375, 35–45.CrossRefGoogle Scholar
  13. 13.
    Herzig, M. C. S.; Leeblundberg, L. M. F. The Agonist Binding-Site on the Bovine Bradykinin B2 Receptor Is Adjacent to a Sulfhydryl and Is Differentiated from the Antagonist Binding-Site by Chemical Cross-Linking. J. Biol. Chem. 1995, 270, 20591–20598.CrossRefGoogle Scholar
  14. 14.
    Gardsvoll, H.; Dano, K.; Ploug, M. Mapping Part of the Functional Epitope for Ligand Binding on the Receptor for Urokinase-Type Plasminogen Activator by Site-Directed Mutagenesis. J. Biol. Chem. 1999, 274, 37995–38003.CrossRefGoogle Scholar
  15. 15.
    Gardsvoll, H.; Gilquin, B.; Le Du, M. H.; Menez, A.; Jorgensen, T. J. D.; Ploug, M. Characterization of the Functional Epitope on the Urokinase Receptor — Complete Alanine Scanning Mutagenesis Supplemented by Chemical Cross-Linking. J. Biol. Chem. 2006, 281, 19260–19272.CrossRefGoogle Scholar
  16. 16.
    Bovet, C.; Ruff, M.; Eiler, S.; Granger, F.; Wenzel, R.; Nazabal, A.; Moras, D.; Zenobi, R. Monitoring Ligand Modulation of Protein-Protein Interactions by Mass Spectrometry: Estrogen Receptor α-SRC1. Anal. Chem. 2008, 80, 7833–7839.CrossRefGoogle Scholar
  17. 17.
    Vidal-Madjar, C.; Jaulmes, A.; Renard, J.; Peter, D.; Lafaye, P. Chromatographic Study of the Adsorption Kinetics of Albumin on Monoclonal and Polyclonal Immunoadsorbents. Chromatographia 1997, 45, 18–24.CrossRefGoogle Scholar
  18. 18.
    Schulz, D. M.; Ihling, C.; Clore, G. M.; Sinz, A. Mapping the Topology and Determination of a Low-Resolution Three-Dimensional Structure of the Calmodulin-Melittin Complex by Chemical Cross-Linking and High-Resolution FTICRMS: Direct Demonstration of Multiple Binding Modes. Biochemistry 2004, 43, 4703–4715.CrossRefGoogle Scholar
  19. 19.
    Frickel, E. M.; Riek, R.; Jelesarov, I.; Helenius, A.; Wuthrich, K.; Ellgaard, L. TROSY-NMR Reveals Interaction Between ERp57 and the Tip of the Calreticulin P-Domain. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 1954–1959.CrossRefGoogle Scholar
  20. 20.
    Litterst, C. M.; Pfitzner, E. An LXXLL Motif in the Transactivation Domain of STAT6 Mediates Recruitment of NCoA-1/SRC-1. J. Biol. Chem. 2002, 277, 36052–36060.CrossRefGoogle Scholar
  21. 21.
    Green, N. S.; Reisler, E.; Houk, K. N. Quantitative Evaluation of the Lengths of Homobifunctional Protein Cross-Linking Reagents Used as Molecular Rulers. Protein Sci. 2001, 10, 1293–1304.CrossRefGoogle Scholar
  22. 22.
    Seitz, M.; Maillard, L. T.; Obrecht, D.; Robinson, J. A. Molecular Characterization of the NCoA-1-STAT6 Interaction. Chem. Biochem. 2008, 9, 1318–1322.Google Scholar
  23. 23.
    De Cristofaro, R.; Landolfi, R. Allosteric Modulation of BPTI Interaction with Human α- and ζ-Thrombin. Eur. J. Biochem. 1999, 260, 97–102.CrossRefGoogle Scholar
  24. 24.
    Wenzel, R.; Roehling, U.; Nazabal, A.; Hillenkamp, F. A. Detector Device for High Mass Ion Detection, a Method for Analyzing Ions of High Mass and a Device for Selection Between Ion Detectors. 2009.Google Scholar
  25. 25.
    Gruic-Sovulj, I.; Ludemann, H. C.; Hillenkamp, F.; Weygand-Durasevic, I.; Kucan, Z.; Peter-Katalinic, J. Detection of Noncovalent tRNA-Aminoacyl-tRNA Synthetase Complexes by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. J. Biol. Chem. 1997, 272, 32084–32091.CrossRefGoogle Scholar
  26. 26.
    Behrendt, N.; Ronne, E.; Dano, K. Domain Interplay in the Urokinase Receptor-Requirement for the Third Domain in High Affinity Ligand Binding and Demonstration of Ligand Contact Sites in Distinct Receptor Domains. J. Biol. Chem. 1996, 271, 22885–22894.CrossRefGoogle Scholar
  27. 27.
    Bich, C.; Baer, S.; Jecklin, M. C.; Zenobi, R. Probing the Hydrophobic Effect of Noncovalent Complexes by Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2010, 21, 286–289.CrossRefGoogle Scholar
  28. 28.
    Bich, C.; Maedler, S.; Chiesa, K.; DeGiacomo, F.; Bogliotti, N.; Zenobi, R. Reactivity and Applications of New Amine Reactive Cross-Linkers for Mass Spectrometric Detection of Protein-Protein Complexes. Anal. Chem. 2010, 82, 172–179.CrossRefGoogle Scholar
  29. 29.
    Wells, C. M.; Dicera, E. Thrombin Is a Na+-Activated Enzyme. Biochemistry 1992, 31, 11721–11730.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2010

Authors and Affiliations

  • Stefanie Mädler
    • 1
  • Markus Seitz
    • 2
  • John Robinson
    • 2
  • Renato Zenobi
    • 1
    Email author
  1. 1.Department of Chemistry and Applied BiosciencesZurichSwitzerland
  2. 2.Institute of Organic ChemistryUniversity of ZurichZurichSwitzerland

Personalised recommendations