On-line bioaffinity-electrospray mass spectrometry for simultaneous detection, identification, and quantification of protein-ligand interactions

  • Mihaela Dragusanu
  • Brîndusa-Alina Petre
  • Stefan Slamnoiu
  • Camelia Vlad
  • Tingting Tu
  • Michael PrzybylskiEmail author
Focus: Affinity Mass Spectrometry


We describe here an on-line combination of a surface acoustic wave (SAW) biosensor with electrospray ionization mass spectrometry (SAW-ESI-MS) that enables the direct detection, identification, and quantification of affinity-bound ligands from a protein-ligand complex on a biosensor chip. A trapping column was used between the SAW-biosensor and the electrospray mass spectrometer equipped with a micro-guard column, which provides simultaneous sample concentration and desalting for the mass spectrometric analysis of the dissociated ligand. First applications of the on-line SAW-ESI-MS combination include (1), differentiation of β-amyloid (Aβ) epitope peptides bound to anti-Aβ antibodies; (2), the identification of immobilized Substance P peptide-calmodulin complex; (3), identification and quantification of the interaction of 3-nitrotyrosine-modified peptides with nitrotyrosine-specific antibodies; and (4), identification of immobilized anti-α-synuclein-human α-synuclein complex. Quantitative determinations of protein-ligand complexes by SAW yielded dissociation constants (KD) from micro-to low nanomolar sample concentrations. The on-line bioaffinity-ESI-MS combination presented here is expected to enable broad bioanalytical application to the simultaneous, label-free determination and quantification of biopolymer-ligand interactions, as diverse as antigen-antibody and lectin-carbohydrate complexes.


Surface Plasmon Resonance Surface Acoustic Wave Mass Spectrometric Analysis Isothermal Titration Calorimetry Trapping Column 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Orosz, F.; Ovádi, J. A Simple Method for the Determination of Dissociation Constants by Displacement ELISA. J. Immunol. Methods 2002, 270, 155–162.CrossRefGoogle Scholar
  2. 2.
    Feig, A. L. Applications of Isothermal Titration Calorimetry in RNA Biochemistry and Biophysics. Biopolymers 2007, 87, 293–301.CrossRefGoogle Scholar
  3. 3.
    Coille, I.; Gauglitz, G.; Johan, H. Characterization of Antibodies and Analytes by Surface Plasmon Resonance for the Optimization of a Competitive Immunoassay Based on Energy Transfer. Anal. Bioanal. Chem. 2002, 372, 293–300.CrossRefGoogle Scholar
  4. 4.
    Homola, J. Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species. Chem. Rev. 2008, 108, 462–493.CrossRefGoogle Scholar
  5. 5.
    Ayela, C.; Roquet, F.; Valera, L.; Granier, C.; Nicu, L.; Pugnière, M. Antibody-Antigenic Peptide Interactions Monitored by SPR and QCM-D: A Model for SPR Detection of IA-2 Autoantibodies in Human Serum. Biosens. Bioelectronics 2007, 22, 3113–3119.CrossRefGoogle Scholar
  6. 6.
    Perpeet, M.; Glass, S.; Gronewold, T.; Kiwitz, A.; Malaveacute, A.; Stoyanov, I.; Tewes, M.; Quandt, E. SAW Sensor System for Marker-Free Molecular Interaction Analysis. Anal. Lett. 2006, 39, 1747–1757.CrossRefGoogle Scholar
  7. 7.
    Lange, K.; Bender, F.; Voigt, A.; Gao, H.; Rapp, M. A Surface Acoustic Wave Biosensor Concept with Low Flow Cell Volumes for Label-Free Detection. Anal. Chem. 2003, 75, 5561–5566.CrossRefGoogle Scholar
  8. 8.
    Lange, K.; Rapp, B.; Rapp, M. Surface Acoustic Wave Biosensors: A Review. Anal. Bioanal. Chem. 2008, 391, 1509–1519.CrossRefGoogle Scholar
  9. 9.
    Rocha-Gaso, M.-I.; March-Iborra, C.; Montoya-Baides, Ã.; Arnau-Vives, A. Surface Generated Acoustic Wave Biosensors for the Detection of Pathogens: A Review. Sensors 2009, 9, 5740–5769.CrossRefGoogle Scholar
  10. 10.
    McLaurin, J.; Cecal, R.; Kierstead, M. E.; Tian, X.; Phinney, A. L.; Manea, M.; French, J. E.; Lambermon, M. H.; Darabie, A. A.; Brown, M. E.; Janus, C.; Chishti, M. A.; Horne, P.; Westaway, D.; Fraser, P. E.; Mount, H. T.; Przybylski, M.; St George-Hyslop, P. Therapeutically Effective Antibodies Against Amyloid-β Peptide Target Amyloid-β Residues 4–10 and Inhibit Cytotoxicity and Fibrillogenesis. Nature Med. 2002, 8, 1263–1269.CrossRefGoogle Scholar
  11. 11.
    Juszczyk, P.; Paraschiv, G.; Szymanska, A.; Kolodziejczyk, A. S.; Rodziewicz-Motowidlo, S.; Grzonka, Z.; Przybylski, M. Binding Epitopes and Interaction Structure of the Neuroprotective Protease Inhibitor Cystatin C with β-Amyloid Revealed by Proteolytic Excision Mass Spectrometry and Molecular Docking Simulation. J. Med. Chem. 2009, 52, 2420–2428.CrossRefGoogle Scholar
  12. 12.
    Schmidt, P.; Youhnovski, N.; Daiber, A.; Balan, A.; Arsic, M.; Bachschmid, M.; Przybylski, M.; Ullrich, V. Specific Nitration at Tyrosine 430 Revealed by High Resolution Mass Spectrometry as Basis for Redox Regulation of Bovine Prostacyclin Synthase. J. Biol. Chem. 2003, 278, 12813–12819.CrossRefGoogle Scholar
  13. 13.
    Ulrich, M.; Petre, A.; Youhnovski, N.; Promm, F.; Schirle, M.; Schumm, M.; Pero, R. S.; Doyle, A.; Checkel, J.; Kita, H.; Thiyagarajan, N.; Acharya, K. R.; Schmid-Grendelmeier, P.; Simon, H. U.; Schwarz, H.; Tsutsui, M.; Shimokawa, H.; Bellon, G.; Lee, J. J.; Przybylski, M.; Doring, G. Post-Translational Tyrosine Nitration of Eosinophil Granule Toxins Mediated by Eosinophil Peroxidase. J. Biol. Chem. 2008, 283, 28629–28640.CrossRefGoogle Scholar
  14. 14.
    Gronewold, T. M. Surface Acoustic Wave Sensors in the Bioanalytical Field: Recent Trends and Challenges. Anal. Chim. Acta 2007, 603, 119–128.CrossRefGoogle Scholar
  15. 15.
    Hayano, T.; Yamauchi, Y.; Asano, K.; Tsujimura, T.; Hashimoto, S.; Isobe, T.; Takahashi, N. Automated SPR-LC-MS/MS System for Protein Interaction Analysis. J. Proteome Res. 2008, 7, 4183–4190.CrossRefGoogle Scholar
  16. 16.
    Marchesini, G. R.; Buijs, J.; Haasnoot, W.; Hooijerink, D.; Jansson, O.; Nielen, M. W. Nanoscale Affinity Chip Interface for Coupling Inhibition SPR Immunosensor Screening with Nano-LC TOF MS. Anal. Chem. 2008, 80, 1159–1168.CrossRefGoogle Scholar
  17. 17.
    Stigter, E. C. A.; de Jong, G. J.; van Bennekom, W. P. Development of an On-Line SPR-Digestion-NanoLC-MS/MS System for the Quantification and Identification of Interferon-γ in Plasma. Biosens. Bioelectron. 2009, 24, 2184–2190.CrossRefGoogle Scholar
  18. 18.
    Treitz, G.; Gronewold, T. M.; Quandt, E.; Zabe-Kuhn, M. Combination of a SAW-Biosensor with MALDI Mass Spectrometric Analysis. Biosens. Bioelectron. 2008, 23, 1496–1502.CrossRefGoogle Scholar
  19. 19.
    Nedelkov, D.; Nelson, R. W. Surface Plasmon Resonance Mass Spectrometry for Protein Analysis. In Methods in Molecular Biology, Vol CCCXXVIII; Nedelkov, D.; Nelson, R. W., Eds.; Humana Press: Totowa, NJ, 2006; pp 131–139.Google Scholar
  20. 20.
    Malencik, D. A.; Anderson, S. R. Binding of Simple Peptides, Hormones, and Neurotransmitters by Calmodulin. Biochemistry 1982, 21, 3480–3486.CrossRefGoogle Scholar
  21. 21.
    Forman, M. S.; Lee, V. M.; Trojanowski, J. Q. Nosology of Parkinson’s Disease: Looking for the Way Out of a Quagmire. Neuron 2005, 47, 479–482.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2010

Authors and Affiliations

  • Mihaela Dragusanu
    • 1
  • Brîndusa-Alina Petre
    • 1
  • Stefan Slamnoiu
    • 1
  • Camelia Vlad
    • 1
  • Tingting Tu
    • 2
  • Michael Przybylski
    • 1
    Email author
  1. 1.Laboratory of Analytical Chemistry and Biopolymer Structure Analysis, Department of ChemistryUniversity of KonstanzKonstanzGermany
  2. 2.Department of ChemistryWashington UniversitySt. LouisUSA

Personalised recommendations