Journal of The American Society for Mass Spectrometry

, Volume 21, Issue 9, pp 1477–1481 | Cite as

Evaluation of a differential mobility spectrometer/miniature mass spectrometer system

  • Fatkhulla K. Tadjimukhamedov
  • Ayanna U. Jackson
  • Erkinjon G. Nazarov
  • Zheng Ouyang
  • R. Graham Cooks
Short Communication

Abstract

A planar differential mobility spectrometer (DMS) was coupled to a Mini 10 handheld rectilinear ion trap (RIT) mass spectrometer (MS) (total weight 10 kg), and the performance of the instrument was evaluated using illicit drug analysis. Coupling of DMS (which requires a continuous flow of drift gas) with a miniature MS (which operates best using sample introduction via a discontinuous atmospheric pressure interface, DAPI), was achieved with auxiliary pumping using a 5 L/min miniature diaphragm sample pump placed between the two devices. On-line ion mobility filtering showed to be advantageous in reducing the background chemical noise in the analysis of the psychotropic drug diazepam in urine using nanoelectrospray ionization. The combination of a miniature mass spectrometer with simple and rapid gas-phase ion separation by DMS allowed the characteristic fragmentation pattern of diazepam to be distinguished in a simple urine extract at lower limits of detection (50 ng/mL) than that achieved without DMS (200 ng/mL). The additional separation power of DMS facilitated the identification of two drugs of similar molecular weight, morphine (average MW = 285.34) and diazepam (average MW = 284.70), using a miniature mass spectrometer capable of unit resolution. The similarity in the proton affinities of these two compounds resulted in some cross-interference in the MS data due to facile ionization of the neutral form of the compound even when the ionic form had been separated by DMS.

Supplementary material

13361_2010_210901477_MOESM1_ESM.doc (860 kb)
Supplementary material, approximately 880 KB.

References

  1. 1.
    Ouyang, Z.; Cooks, R. G. Miniature Mass Spectrometers. Annu. Rev. Anal. Chem. 2009, 2, 187–214.CrossRefGoogle Scholar
  2. 2.
    March, R. E.; Todd, J. F. J. Quadrupole Ion Trap Mass Spectrometry, 2nd ed.; John Wiley and Sons, Inc.: Hoboken, NJ, 2005; pp 175–179, 189–210.CrossRefGoogle Scholar
  3. 3.
    Whitten, W. B.; Reilly, P. T. A.; Ramsey, J. M. High-Pressure Ion Trap Mass Spectrometry. Rapid Commun. Mass Spectrom. 2004, 18, 1749–1752.CrossRefGoogle Scholar
  4. 4.
    Griest, W. H.; Lammert, S. A. In Chemical Analysis, Vol. CLXIX; Winefordner, J. D., Ed.; Wiley and Sons, Inc.: Hoboken, NJ, 2006; pp 61–89.Google Scholar
  5. 5.
    Gao, L.; Cooks, R. G.; Ouyang, Z. Breaking the Pumping Speed Barrier in Mass Spectrometry: Discontinuous Atmospheric Pressure Interface. Anal. Chem. 2008, 80, 4026–4032.CrossRefGoogle Scholar
  6. 6.
    Gao, L.; Li, G. T.; Nie, Z. X.; Duncan, J.; Ouyang, Z.; Cooks, R. G. Characterization of a Discontinuous Atmospheric Pressure Interface. Multiple Ion Introduction Pulses for Improved Performance. Int. J. Mass Spectrom. 2009, 283, 30–34.CrossRefGoogle Scholar
  7. 7.
    Buryakov, I. A.; Krylov, E. V.; Nazarov, E. G.; Rasulev, U. K. A New Method of Separation of Multi-Atomic Ions by Mobility at Atmospheric Pressure Using a High-Frequency Amplitude-Asymmetric Strong Electric Field. Int. J. Mass Spectrom. Ion Processes 1993, 128, 143–148.CrossRefGoogle Scholar
  8. 8.
    Guevremont, R.; Purves, R. W. High Field Asymmetric Waveform Ion Mobility Spectrometry-Mass Spectrometry: An Investigation of Leucine Enkephalin Ions Produced by Electrospray Ionization. J. Am. Soc. Mass Spectrom. 1999, 10, 492–501.CrossRefGoogle Scholar
  9. 9.
    Shvartsburg, A. A. Differential Ion Mobility Spectrometry: Nonlinear Ion Transport and Fundamentals of FAIMS; CRC Press: Boca Raton, 2009.Google Scholar
  10. 10.
    Eiceman, G. A.; Karpas, Z. Ion Mobility Spectrometry, 2nd ed; Taylor and Francis Group: Boca Raton, FL, 2005.CrossRefGoogle Scholar
  11. 11.
    Krebs, M. D.; Zapata, A. M.; Nazarov, E. G.; Miller, R. A.; Costa, I. S.; Sonenshein, A. L.; Davis, C. E. Detection of Biological and Chemical Agents Using Differential Mobility Spectrometry Technology. IEEE Sens. J. 2005, 5, 696–703.CrossRefGoogle Scholar
  12. 12.
    Eiceman, G. A.; Krylov, E. V.; Krylova, N. S.; Nazarov, E. G.; Miller, R. A. Separation of Ions from Explosives in Differential Mobility Spectrometry by Vapor-Modified Drift Gas. Anal. Chem. 2004, 76, 4937–4944.CrossRefGoogle Scholar
  13. 13.
    Levin, D. S.; Vouros, P.; Miller, R. A.; Nazarov, E. G. Using a Nanoelectrospray-Differential Mobility Spectrometer-Mass Spectrometer System for the Analysis of Oligosaccharides with Solvent Selected Control Over ESI Aggregate Ion Formation. J. Am. Soc. Mass Spectrom. 2007, 18, 502–511.CrossRefGoogle Scholar
  14. 14.
    Miller, R. A.; Nazarov, E.; Coy, S. L.; Krylov, E. Miniature Differential Mobility Spectrometer as a Pre-Filter for Atmospheric-Pressure Mass Spectrometry. Int. J. Ion Mobility Spectrom. 2006, 9, 35–39.Google Scholar
  15. 15.
    Gao, L.; Song, Q.; Patterson, G. E.; Cooks, R. G.; Ouyang, Z. Handheld Rectilinear Ion Trap Mass Spectrometer. Anal. Chem. 2006, 78, 5994–6002.CrossRefGoogle Scholar
  16. 16.
    Schwartz, J. C.; Senko, M. W.; Syka, J. E. P. A Two-Dimensional Quadrupole Ion Trap Mass Spectrometer. J. Am. Soc. Mass Spectrom. 2002, 13, 659–669.CrossRefGoogle Scholar
  17. 17.
    Schneider, B. B.; Covey, T. R.; Coy, S. L.; Krylov, E. V.; Nazarov, E. G. Planar Differential Mobility Spectrometer as a Pre-Filter for Atmospheric Pressure Ionization Mass Spectrometry. Int. J. Mass Spectrom. in press.Google Scholar

Copyright information

© American Society for Mass Spectrometry 2010

Authors and Affiliations

  • Fatkhulla K. Tadjimukhamedov
    • 1
  • Ayanna U. Jackson
    • 1
  • Erkinjon G. Nazarov
    • 2
  • Zheng Ouyang
    • 3
  • R. Graham Cooks
    • 1
  1. 1.Department of ChemistryPurdue UniversityWest LafayetteUSA
  2. 2.Sionex CorporationBedfordUSA
  3. 3.Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations