Journal of The American Society for Mass Spectrometry

, Volume 21, Issue 9, pp 1547–1553

Ultrasonication-assisted spray ionization mass spectrometry for the analysis of biomolecules in solution

  • Tsung-Yi Chen
  • Jia-Yi Lin
  • Jen-Yi Chen
  • Yu-Chie Chen
Article

Abstract

In this paper, we describe a novel technique—ultrasonication-assisted spray ionization (UASI)—for the generation of singly charged and multiply charged gas-phase ions of biomolecules (e.g., amino acids, peptides, and proteins) from solution; this method employs a low-frequency ultrasonicator (ca. 40 kHz) in place of the high electric field required for electrospray ionization. When a capillary inlet is immersed into a sample solution within a vial subjected to ultrasonication, the solution is continually directed to the capillary outlet as a result of ultrasonication-assisted capillary action; an ultrasonic spray of the sample solution is emitted at the outlet of the tapered capillary, leading to the ready generation of gas-phase ions. Using an ion trap mass spectrometer, we found that singly charged amino acid and multiply charged peptides/proteins ions were generated through this single-step operation, which is both straightforward and extremely simple to perform. The setup is uncomplicated: only a low-frequency ultrasonicator and a tapered capillary are required to perform UASI. The mass spectra of the multiply charged peptides and proteins obtained from sample solutions subjected to UASI resemble those observed in ESI mass spectra.

Supplementary material

13361_2010_210901547_MOESM1_ESM.doc (348 kb)
Supplementary material, approximately 356 KB.
13361_2010_210901547_MOESM2_ESM.mpeg (60.5 mb)
Supplementary material, approximately 63457 KB.

References

  1. 1.
    Karas, M.; Hillenkamp, F. Laser Desorption Ionization of Proteins with Molecular Masses Exceeding 10,000 Daltons. Anal. Chem. 1988, 60, 2299–2301.CrossRefGoogle Scholar
  2. 2.
    Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, T. Protein and Polymer Analyses up to m/z 100,000 by Laser Ionization Time-of-Flight Mass Spectrometry. Rapid Commun. Mass Spectrom. 1988, 2, 151–153.CrossRefGoogle Scholar
  3. 3.
    Sunner, J.; Dratz, E.; Chen, Y.-C. Graphite Surface-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry of Peptides and Proteins from Liquid Solutions. Anal. Chem. 1995, 67, 4335–4342.CrossRefGoogle Scholar
  4. 4.
    Lo, C.-Y.; Lin, J.-Y.; Chen, W.-Y.; Chen, C.-T.; Chen, Y.-C. Surface-Assisted Laser Desorption/Ionization Mass Spectrometry on Titania Nanotube Arrays. J. Am. Soc. Mass Spectrom. 2008, 19, 1014–1020.CrossRefGoogle Scholar
  5. 5.
    Wei, J.; Buriak, J. M.; Siuzdak, G. Desorption-Ionization Mass Spectrometry on Porous Silicon. Nature 1999, 399, 243–246.CrossRefGoogle Scholar
  6. 6.
    Takats, Z.; Wiseman, J. M.; Gologan, B.; Cooks, R. G. Mass Spectrometry Sampling under Ambient Conditions with Desorption Electrospray Ionization. Science 2004, 306, 471–473.CrossRefGoogle Scholar
  7. 7.
    Cody, R. B.; Laramee, J. A.; Durst, H. D. Versatile New Ion Source for the Analysis of Materials in Open Air under Ambient Conditions. Anal. Chem. 2005, 77, 2297–2302.CrossRefGoogle Scholar
  8. 8.
    Shiea, J.; Huang, M.-Z.; Shu, H.-J.; Lee, C.-Y.; Yuan, C.-H.; Beech, I.; Sunner, J. Electrospray-Assisted Laser Desorption/Ionization Mass Spectrometry for Direct Ambient Analysis of Solids. Rapid Commun. Mass Spectrom. 2005, 19, 3701–3704.CrossRefGoogle Scholar
  9. 9.
    McEwen, C. N.; McKay, R. G.; Larsen, B. S. Analysis of Solids, Liquids, and Biological Tissues Using Solids Probe Introduction at Atmospheric Pressure on Commercial LC/MS Instruments. Anal. Chem. 2005, 77, 7826–7831.CrossRefGoogle Scholar
  10. 10.
    Chen, H.; Yang, S.; Wortmann, A.; Zenobi, R. Neutral Desorption Sampling of Living Objects for Rapid Analysis by Extractive Electrospray Ionization Mass Spectrometry. Angew. Chem. Int. Ed. 2007, 46, 7591–7594.CrossRefGoogle Scholar
  11. 11.
    Zhang, X.; Cooks, R. G.; Quyang, Z. Low-Temperature Plasma Probe for Ambient Desorption Ionization. Anal. Chem. 2008, 80, 9097–9104.CrossRefGoogle Scholar
  12. 12.
    Banks, J. F.; Shen, S.; Whitehouse, C. M.; Fenn, J. B. Ultrasonically Assisted Electrospray Ionization for LC/MS Determination of Nucleosides from a Transfer RNA Digest. Anal. Chem. 1994, 66, 406–414.CrossRefGoogle Scholar
  13. 13.
    Banks, J. F.; Quinn, J. P.; Whitehouse, C. M. LC/ESI-MS Determination of Proteins Using Conventional Liquid Chromatography and Ultrasonically Assisted Electrospray. Anal. Chem. 1994, 66, 3688–3695.CrossRefGoogle Scholar
  14. 14.
    Hirabayashi, A.; Sakairi, M.; Koizumi, H. Sonic Spray Ionization Method for Atmospheric Pressure Ionization Mass Spectrometry. Anal. Chem. 1994, 66, 4557–4559.CrossRefGoogle Scholar
  15. 15.
    Hirabayashi, A.; Sakairi, M.; Koizumi, H. Sonic Spray Mass Spectrometry. Anal. Chem., 1995, 67, 2878–2882.CrossRefGoogle Scholar
  16. 16.
    Dams, R.; Benijts, T.; Gnther, W.; Lambert, W.; De Leenheer, A. Sonic Spray Ionization Technology: Performance Study and Application to A LC/MS Analysis on a Monolithic Silica Column for Heroin Impurity Profiling. Anal. Chem. 2002, 74, 3206–3212.CrossRefGoogle Scholar
  17. 17.
    Arinobu, T.; Seno, H.; Ishii, A.; Suzuki, O. Comparison of SSI with APCI as an Interface of HPLC-Mass Spectrometry for Analysis of a Drug and Its Metabolites. J. Am. Soc. Mass Spectrom. 2002, 13, 204–208.CrossRefGoogle Scholar
  18. 18.
    Hirabayashi, A.; Hirabayashi, Y.; Sakairi, M.; Koizumi, H. Multiply-Charged Ion Formation by Sonic spray. Rapid Commun. Mass Spectrom. 1996, 10, 1703–1705.CrossRefGoogle Scholar
  19. 19.
    Hirabayashi, Y.; Hirabayashi, A.; Takada, Y.; Sakairi, M.; Koizumi, H. A. Sonic Spray Interface for the Mass Analysis of Highly Charged Ions from Protein Solutions at High Flow Rates. Anal. Chem. 1998, 70, 1882–1884.CrossRefGoogle Scholar
  20. 20.
    Shiea, J.; Chang, D.-Y.; Lin, C.-H.; Jiang, S.-J. Generating Multiply Charged Protein Ions by Ultrasonic Nebulization/Multiple Channel-Electrospray Ionization Mass Spectrometry. Anal. Chem. 2001, 73, 4983–4987.CrossRefGoogle Scholar
  21. 21.
    Zhu, L.; Gamez, G.; Chen, H.; Chingin, K.; Zenobi, R. Rapid Detection of Melamine in Untreated Milk and Wheat Gluten by Ultrasound-Assisted Extractive Electrospray Ionization Mass Spectrometry (EESIMS). Chem. Commun. 2009, 5, 559–561.CrossRefGoogle Scholar
  22. 22.
    Suslick, K. S.; Flannigan, D. J. Inside a Collapsing Bubble: Sonoluminescence and the Conditions during Cavitation. Annu. Rev. Phys. Chem. 2008, 59, 659–683.CrossRefGoogle Scholar
  23. 23.
    Suslick, K. S.; Hammerton, D. A.; Cline, R. E. Sonochemical Hot Spot. J. Am. Chem. Soc. 1986, 108, 5641–5642.CrossRefGoogle Scholar
  24. 24.
    Wu, Y.-T.; Chen, Y.-C. Sheathless Capillary Electrophoresis/Electrospray Ionization Mass Spectrometry Using A Pulled Bare Fused-Silica Capillary as the Electrospray Emitter. Anal. Chem. 2005, 77, 2071–2077.CrossRefGoogle Scholar
  25. 25.
    Wu, Y.-T.; Chen, Y.-C. Determination of Calcium in Complex Samples Using Functional Magnetic Beads Combined with Electrodeless/Sheathless Electrospray Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom. 2006, 20, 1995–1999.CrossRefGoogle Scholar
  26. 26.
    Hong, C.-Y.; Chen, Y.-C. Selective Enrichment of Ochratoxin A Using Human Serum Albumin Bound Magnetic Beads as the Concentrating Probes for Capillary Electrophoresis /Electrospray Ionization-Mass Spectrometric Analysis. J. Chromatogr. A 2007, 1159, 250–255.CrossRefGoogle Scholar
  27. 27.
    Chen, F. F.; Arnush, D. The Floating Potential of Cylindrical Langmuir Probes. Phys. Plasmas 2001, 8, 5051–5052.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2010

Authors and Affiliations

  • Tsung-Yi Chen
    • 1
  • Jia-Yi Lin
    • 1
  • Jen-Yi Chen
    • 1
  • Yu-Chie Chen
    • 1
  1. 1.Department of Applied ChemistryNational Chiao Tung UniversityHsinchuTaiwan

Personalised recommendations