The mobile proton hypothesis in fragmentation of protonated peptides: A perspective

Short Communication Focus: Mobile Proton Model


  1. 1.
    Wysocki, V. H.; Tsaprailis, G.; Smith, L. L.; Breci, L. A. Mobile and Localized Protons: A Framework for Understanding Peptide Dissociation. J. Mass Spectrom. 2000, 35, 1399–1406.CrossRefGoogle Scholar
  2. 2.
    Wysocki, V. H.; Cheng, G.; Zhang, Q.; Hermann, K. A.; Beardsley, R. L.; Hilderbrand, A. E. Peptide Fragmentation Overview. In Principles of Mass Spectrometry Applied to Biomolecules, Laskin, J.; Lifshitz, C., Eds.; John Wiley and Sons: Hoboken, NJ, 2006; Chap VIII, p. 279–300.Google Scholar
  3. 3.
    McLafferty, F. W.; Tureček, F. Interpretation of Mass Spectra 4th ed.; University Science Books: Mill Valley, CA, 1993;Google Scholar
  4. 4.
    Barber, M.; Bordoli, R. S.; Sedgwick, R. D,: Tyler, A. N. Fast-Atom Bombardment of Solids (F AB): A New Ion Source for Mass Spectrometry. J. Chem. Soc. Chem. Commun. 1981, 335–326.Google Scholar
  5. 5.
    Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. Electrospray Ionization-Principles and Practice. Mass Spectrom. Rev. 1990, 9, 37–70.CrossRefGoogle Scholar
  6. 6.
    Hillenkamp, F.; Karas, J.; Beavis, R. C.; Chait, B. T. Matrix Assisted Laser Desorption/Ionization Mass Spectrometry of Biopolymers. Anal. Chem. 1991, 63, 1193A-1203A.CrossRefGoogle Scholar
  7. 7.
    Cheng, C.; Gross, M. L. Applications and Mechanisms of Charge-Remote Fragmentations. Mass Spectrom. Rev. 2000, 19, 398–420.CrossRefGoogle Scholar
  8. 8.
    Johnson, R. S.; Martin, S. A.; Biemann, K.; Stults, J. T.; Throck Watson, J. Novel Fragmentation Process of Peptides by Collision-Induced Decomposition in a Tandem Mass Spectrometer: Differentiation of Leucine and Isoleucine. Anal. Chem. 1987, 59, 2621–2625.CrossRefGoogle Scholar
  9. 9.
    Johnson, R. S.; Martin, S. A.; Biemann, K. Collision-Induced Fragmentation of (M + H)+ Ions of Peptides. Side-Chain-Specific Sequence Ions. Int. J. Mass Spectrom. Ion Processes. 1988, 86, 137–154.CrossRefGoogle Scholar
  10. 10.
    Burlet, O.; Yang, C.-Y.; Gaskell, S. J. Influence of Cysteine to Cysteic Acid Oxidation on the Collision-Activated Decomposition of Protonated Peptides: Evidence for Intraionic Interactions. J. Am. Soc. Mass Spectrom. 1992, 3, 337–344.CrossRefGoogle Scholar
  11. 11.
    Tang, X.-J.; Boyd, R. K. An Investigation of Fragmentation Mechanisms of Doubly Protonated Tryptic Peptides. Rapid Commun. Mass Spectrom. 1992, 6, 651–657.CrossRefGoogle Scholar
  12. 12.
    McCormack, A. L.; Somogyi, Á.; Dongré, A. R.; Wysocki, V. H. Fragmentation of Protonated Peptides: Surface-Induced Dissociation in Conjunction with a Quantum Mechanical Approach. Anal. Chem. 1993, 65, 2859–2872.CrossRefGoogle Scholar
  13. 13.
    Tsaprailis, G.; Nair, H.; Somogyi, A.; Wysocki, V. H.; Zhong, W. Q.; Futrell, J. H.; Summerfield, S. G.; Gaskell, S. J. Influence of Secondary Structure on the Fragmentation of Protonated Peptides. J. Am. Soc. Mass Spectrom. 1999, 121, 5142–5154.Google Scholar
  14. 14.
    Kapp, E. A.; Schultz, F.; Reid, G. E.; Eddes, J. S.; Moritz, R. L.; O’Hair, R. A. J.; Speed, T. P.; Simpson, R. J. Mining a Tandem Mass Spectrometry Database to Determine the Trends and Global Factors Influencing Peptide Fragmentation. Anal. Chem. 2003, 75, 6251–6254.CrossRefGoogle Scholar
  15. 15.
    Huang, Y.; Triscari, J. M.; Tseng, G. C.; Pasa-Tolic, L.; Lipton, M. S.; Smith, R. D.; Wysocki, V. H. Statistical Characterization of the Charge State and Residue Dependence of Low-Energy CID Peptide Dissociation Patterns. Anal. Chem. 2005, 77, 5800–5813.CrossRefGoogle Scholar
  16. 16.
    Mueller, D. R.; Eckersley, M.; Richter, W. R. Hydrogen Transfer Reactions in the Formation of “Y + 2” Sequence Ions from Protonated Peptides. Org. Mass Spectrom. 1988, 23, 217–222.CrossRefGoogle Scholar
  17. 17.
    Kenny, P. T. M.; Nomoto, K.; Orlando, R. Fragmentation Studies of Peptides: The Formation of v Ions. Rapid Commun. Mass Spectrom. 1992, 6, 95–97.CrossRefGoogle Scholar
  18. 18.
    Burlet, O.; Orkiszewski, R. S.; Ballard, K. D.; Gaskell, S. J. Charge Promotion of Low-Energy Fragmentations of Peptide Ions. Rapid Commun. Mass Spectrom. 1992, 6, 658–662.CrossRefGoogle Scholar
  19. 19.
    Tang, X.-J.; Thibault, P.; Boyd, R. K. Fragmentation Reactions of Multiply-Protonated Peptides and Implications for Sequencing by Tandem Mass Spectrometry with Low-Energy Collision-Induced Dissociation. Anal. Chem. 1993, 65, 2824–2834.CrossRefGoogle Scholar
  20. 20.
    Somogyi, Á.; Wysocki, V. H.; Mayer, I. The Effect of Protonation Site on Bond Strengths in Simple Protonated Peptides: Application of Ab Initio and MNDO Bond Orders and MNDO Energy Partitioning. J. Am. Soc. Mass Spectrom. 1994, 5, 704–717.CrossRefGoogle Scholar
  21. 21.
    Paizs, B.; Suhai, S. Fragmentation Pathways of Protonated Peptides. Mass Spectrom. Rev. 2005, 24, 508–548.CrossRefGoogle Scholar
  22. 22.
    Harrison, A. G.; Young, A. B.; Bleiholder, C.; Suhai, S.; Paizs, B. Scrambling of Sequence Information in Collision-Induced Dissociation of Peptides. J. Am. Chem. Soc. 2006, 128, 10364–10365.CrossRefGoogle Scholar
  23. 23.
    Erlekam, U.; Bythell, B. J.; Scuderi, D.; Van Stipdonk, M.; Paizs, B.; Maitre, P. Infrared Spectroscopy Fragments of Protonated Peptides. Direct Evidence for Macocyclic Structure of b5 Ions. J. Am. Chem. Soc. 2009, 131, 11503–11508.CrossRefGoogle Scholar
  24. 24.
    Garcia, I.; Giles, K.; Bateman, R. H.; Gaskell, S. J. Evidence for Structural Variants of a- and b-Type Peptide Fragment Ions Using Combined Ion Mobility/Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2008, 19, 609–613.CrossRefGoogle Scholar
  25. 25.
    Garcia, I.; Giles, K.; Bateman, R. H.; Gaskell, S. J. Studies of Peptide a-and b-Type Fragment Ions Using Stable Isotope Labeling and Integrated Ion Mobility/Tandem Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2008, 19, 1781–1787.CrossRefGoogle Scholar
  26. 26.
    Perkins, B. R.; Chamot-Rooke, J.; Yoon, S.H.; Gucinski, A. C.; Somogyi, A.; Wysocki, V. H. Evidence of Diketopiperazine and Oxazolone Structures for HA b2+ Ion. J. Am. Chem. Soc. 2009, 131, 17528–17529.CrossRefGoogle Scholar
  27. 27.
    de Grotthuss, C. J. T. Sur la décomposition de l’eau et des corps qu’elle tient en dissolution à l’aide de l’électricité galvanique (On the decomposition of water and of solutes by electrical currents). Ann. Chim. 1806, 58, 54–73.Google Scholar
  28. 28.
    Agmon, N. The Grotthuss Mechanism. Chem. Phys. Lett. 1995, 244, 456–462.CrossRefGoogle Scholar
  29. 29.
    Markovitch, O.; Chen, H.; Izvekov, S.; Paesani, F.; Voth, G. A.; Agmon, N. Special Pair Dance and Partner Selection: Elementary Steps in Proton Transport in Liquid Water, J. Phys. Chem. B 2008, 112, 9456–9466.CrossRefGoogle Scholar
  30. 30.
    Blakely, M. P.; Ruiz, F.; Cachau, R.; Hazemann, I.; Meilleur, F.; Mitschier, A.; Gineil, S.; Afonine, P.; Ventura, O. N.; Cousido-Siah, A.; Haertlein, M.; Joachimiak, A.; Myles, D.; Podjarny, A. Quantum Model of Catalysis Based on a Mobile Proton Revealed by Subatomic X-Ray and Neutron Diffraction Studies of h-Aldose Reductase. Proc. Nat. Acad. Sci. U.S.A. 2008, 105, 1844–1848.CrossRefGoogle Scholar
  31. 31.
    Morrison, C. A.; Siddick, M. M.; Camp, P. J.; Wilson, C. C. Toward Understanding Mobile Proton Behavior from First Principles Calculation: The Short Hydrogen Bond in Crystalline Urea-Phosphoric Acid. J. Am. Chem. Soc. 2005, 127, 4042–4048.CrossRefGoogle Scholar
  32. 32.
    Vanheusden, K.; Warren, W. L.; Devine, R. A. B.; Fleetwood, D. M.; Schwank, J. R.; Shaneyfelt, M. R.; Winokur, P. S.; Lemnios, Z. J. Nonvolatile Memory Device Based on Mobile Protons in SiO2 Thin Films. Nature. 1997, 386, 587–589.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2010

Authors and Affiliations

  1. 1.Institute for National Measurement StandardsNational Research Council of CanadaOttawaCanada
  2. 2.Department of Chemistry and BiochemistryUniversity of ArizonaTucsonUSA

Personalised recommendations