Imaging mass spectrometry with silver naeoparticles reveals the distribution of fatty acids in mouse retinal sections

  • Takahiro Hayasaka
  • Naoko Goto-Inoue
  • Nobuhiro Zaima
  • Kamlesh Shrivas
  • Yukiyasu Kashiwagi
  • Mari Yamamoto
  • Masami Nakamoto
  • Mitsutoshi Setou


A new approach to the visualization of fatty acids in mouse liver and retinal samples has been developed using silver nanoparticles (AgNPs) in nanoparticle-assisted laser desorption/ ionization imaging mass spectrometry (nano-PALDI-IMS) in negative ion mode. So far, IMS analysis has concentrated on main cell components, such as cell membrane phospholipids and cytoskeletal peptides. AgNPs modified with alkylcarboxylate and alkylamine were used for nano-PALDI-IMS to identify fatty acids, such as stearic, oleic, linoleic, arachidonic, and eicosapentaenoic acids, as well as palmitic acid, in mouse liver sections; these fatty acids are not detected using 2,5-dihydroxybenzoic acid (DHB) as a matrix. The limit of detection for the determination of palmitic acid was 50 pmol using nano-PALDI-IMS. The nano-PALDI-IMS method is successfully applied to the reconstruction of the ion images of fatty acids in mouse liver sections. We verified the detection of fatty acids in liver tissue sections of mice by analyzing standard lipid samples, which showed that fatty acids were from free fatty acids and dissociated fatty acids from lipids when irradiated with a laser. Additionally, we applied the proposed method to the identification of fatty acids in mouse retinal tissue sections, which enabled us to learn the six-zonal distribution of fatty acids in different layers of the retina. We believe that the current approach using AgNPs in nano-PALDI-IMS could lead to a new strategy to analyze basic biological mechanisms and several diseases through the distribution of fatty acids.


Palmitic Acid Image Mass Spectrometry Mouse Retina AgNPs Solution Image Mass Spectrometry Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Shimma, S.; Sugiura, Y.; Hayasaka, T.; Zaima, N.; Matsumoto, M.; Setou, M. Mass Imaging and Identification of Biomolecules with MALDI-QIT-TOF-Based System. Anal. Client. 2008, 80(3), 878–885.CrossRefGoogle Scholar
  2. 2.
    Hayasaka, T.; Goto-Inoue, N.; Sugiura, Y.; Zaima, N.; Nakanishi, H.; Ohishi, K.; Nakanishi, S.; Naito, T.; Taguchi, R.; Setou, M. Matrix-Assisted Laser Desorption/Ionization Quadrupole Ion Trap Time-of-Flight (MALDI-QIT-TOF)-Based Imaging Mass Spectrometry Reveals a Layered Distribution of Phospholipid Molecular Species in the Mouse Retina. Rapid Commun. Mass Spectrom. 2008, 22(21), 3415–3426.CrossRefGoogle Scholar
  3. 3.
    Hayasaka, T.; Goto-Inoue, N.; Zaima, N.; Kimura, Y.; Setou, M. Organ-Specific Distributions of Lysophosphatidylcholine and Triacylglycerol in Mouse Embryo. Lipids 2009, 44(9), 837–848.CrossRefGoogle Scholar
  4. 4.
    Zaima, N.; Hayasaka, T.; Goto-Inoue, N.; Setou, M. Imaging of Metabolites by MALDI Mass Spectrometry. J. Oleo. Sci. 2009, 58(8), 415–419.Google Scholar
  5. 5.
    Groseclose, M. R.; Andersson, M.; Hardesty, W. M.; Caprioli, R. M. Identification of Proteins Directly from Tissue: In Situ Tryptic Digestions Coupled with Imaging Mass Spectrometry. J. Mass Spectrom. 2007, 42(2), 254–262.CrossRefGoogle Scholar
  6. 6.
    Andersson, M.; Groseclose, M. R.; Deutch, A. Y.; Caprioli, R. M. Imaging Mass Spectrometry of Proteins and Peptides: 3D Volume Reconstruction. Nat. Methods 2008, 5(1), 101–108.CrossRefGoogle Scholar
  7. 7.
    Goto-Inoue, N.; Hayasaka, T.; Sugiura, Y.; Taki, T.; Li, Y. T.; Matsumoto, M.; Setou, M. High-Sensitivity Analysis of Glycosphingolipids by Matrix-Assisted Laser Desorption/Ionization Quadrupole Ion Trap Time-of-Flight Imaging Mass Spectrometry on Transfer Membranes. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2008, 870(1), 74–83.CrossRefGoogle Scholar
  8. 8.
    Goto-Inoue, N.; Hayasaka, T.; Zaima, N.; Setou, M. The Specific Localization of Seminolipid Molecular Species on Mouse Testis During Testicular Maturation Revealed by Imaging Mass Spectrometry. Glycobiology 2009, 19(9), 950–957.CrossRefGoogle Scholar
  9. 9.
    Shimma, S.; Sugiura, Y.; Hayasaka, T.; Hoshikawa, Y.; Noda, T.; Setou, M. MALDI-Based Imaging Mass Spectrometry Revealed Abnormal Distribution of Phospholipids in Colon Cancer Liver Metastasis. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2007, 855(1), 98–103.CrossRefGoogle Scholar
  10. 10.
    Wen, X.; Dagan, S.; Wysocki, V. H. Small-Molecule Analysis with Silicon-Nanoparticle-Assisted Laser Desorption/Ionization Mass Spectrometry. Anal. Chem. 2007, 79(2), 434–444.CrossRefGoogle Scholar
  11. 11.
    Wu, H. P.; Yu, C. J.; Lin, C. Y.; Lin, Y. H.; Tseng, W. L. Gold Nanoparticles as Assisted Matrices for the Detection of Biomolecules in a High-Salt Solution Through Laser Desorption/Ionization Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2009, 20(5), 875–882.CrossRefGoogle Scholar
  12. 12.
    Shrivas, K.; Wu, H. F. Applications of Silver Nanoparticles Capped with Different Functional Groups as the Matrix and Affinity Probes in Surface-Assisted Laser Desorption/Ionization Time-of-Flight and Atmospheric Pressure Matrix-Assisted Laser Desorption/Ionization Ion Trap Mass Spectrometry for Rapid Analysis of Sulfur Drugs and Biothiols in Human Urine. Rapid Commun. Mass Spectrom. 2008, 22(18), 2863–2872.CrossRefGoogle Scholar
  13. 13.
    Chiu, T. C.; Chang, L. C.; Chiang, C. K.; Chang, H. T. Determining Estrogens Using Surface-Assisted Laser Desorption/Ionization Mass Spectrometry with Silver Nanoparticles as the Matrix. J. Am. Soc. Mass Spectrom. 2008, 19(9), 1343–1346.CrossRefGoogle Scholar
  14. 14.
    Sherrod, S. D.; Diaz, A. J.; Russell, W. K.; Cremer, P. S.; Russell, D. H. Silver Nanoparticles as Selective Ionization Probes for Analysis of Olefins by Mass Spectrometry. Anal. Chem. 2008, 80(17), 6796–6799.CrossRefGoogle Scholar
  15. 15.
    Watanabe, T.; Okumura, K.; Kawasaki, H.; Arakawa, R. Effect of Urea Surface Modification and Photocatalytic Cleaning on Surface-Assisted Laser Desorption Ionization Mass Spectrometry with Amorphous TiO2 Nanoparticles. J. Mass Spectrom. 2009, 44(10), 1443–1451.CrossRefGoogle Scholar
  16. 16.
    Wang, M. T.; Liu, M. H.; Wang, C. R.; Chang, S. Y. Silver-Coated Gold Nanoparticles as Concentrating Probes and Matrices for Surface-Assisted Laser Desorption/Ionization Mass Spectrometric Analysis of Aminoglycosides. J. Am. Soc. Mass Spectrom. 2009, 20(10), 1925–1932.CrossRefGoogle Scholar
  17. 17.
    Taira, S.; Sugiura, Y.; Moritake, S.; Shimma, S.; Ichiyanagi, Y.; Setou, M. Nanoparticle-Assisted Laser Desorption/Ionization Based Mass Imaging with Cellular Resolution. Anal. Chem. 2008, 80(12), 4761–4766.CrossRefGoogle Scholar
  18. 18.
    Ageta, H.; Asai, S.; Sugiura, Y.; Goto-Inoue, N.; Zaima, N.; Setou, M. Layer-Specific Sulfatide Localization in Rat Hippocampus Middle Molecular Layer is Revealed by Nanopartide-Assisted Laser Desorption/ Ionization Imaging Mass Spectrometry. Med. Mol. Morphol. 2009, 42(1), 16–23.CrossRefGoogle Scholar
  19. 19.
    Novak, E. M.; Dyer, R. A.; Innis, S. M. High Dietary Omega-6 Fatty Acids Contribute to Reduced Docosahexaenoic Acid in the Developing Brain and Inhibit Secondary Neunte Growth. Brain Res. 2008, 1237, 136–445.CrossRefGoogle Scholar
  20. 20.
    Rousseau, D.; Helies-Toussaint, C.; Raederstorff, D.; Moreau, D.; Grynberg, A. Dietary n-3 Polyunsaturated Fatty Acids Affect the Development of Renovascular Hypertension in Rats. Mol. Cell. Biochem. 2001, 225(1), 109–119.CrossRefGoogle Scholar
  21. 21.
    Farkas, K.; Ratchford, I. A.; Noble, R. C.; Speake, B. K. Changes in the Size and Docosahexaenoic Acid Content of Adipocytes During Chick Embryo Development. Lipids 1996, 31(3), 313–321.CrossRefGoogle Scholar
  22. 22.
    Innis, S. M.; Friesen, R. W. Essential n-3 Fatty Acids in Pregnant Women and Early Visual Acuity Maturation in Term Infants. Am. J. Clin. Nutr. 2008, 87(3), 548–557.Google Scholar
  23. 23.
    Alessandri, J. M.; Goustard, B.; Guesnet, P.; Durand, G. Docosahexaenoic Acid Concentrations in Retinal Phospholipids of Piglets Fed an Infant Formula Enriched with Long-Chain Polyunsaturated Fatty Acids: Effects of Egg Phospholipids and Fish Oils with Different Ratios of Eicosapentaenoic Acid to Docosahexaenoic Acid. Am. J. Clin. Nutr. 1998, 67(3), 377–385.Google Scholar
  24. 24.
    Innis, S. M. Essential Fatty Acids in Growth and Development. Prog. Lipid Res. 1991, 30(1), 39–103.CrossRefGoogle Scholar
  25. 25.
    Kennedy, A.; Martinez, K.; Chuang, C. C.; LaPoint, K.; McIntosh, M. Saturated Fatty Acid-Mediated Inflammation and Insulin Resistance in Adipose Tissue: Mechanisms of Action and Implications. J. Nutr. 2009, 139(1), 1–4.Google Scholar
  26. 26.
    Yu, H.; Lopez, E.; Young, S. W.; Luo, J.; Tian, H.; Cao, P. Quantitative Analysis of Free Fatty Acids in Rat Plasma Using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry with Meso-Tetrakis Porphyrin as Matrix. Anal. Biochem. 2006, 354(2), 182–191.CrossRefGoogle Scholar
  27. 27.
    Ayorinde, F. O.; Garvin, K.; Saeed, K. Determination of the Fatty Acid Composition of Saponified Vegetable Oils Using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Rapid Commun. Mass Spectrom. 2000, 14(7), 608–615.CrossRefGoogle Scholar
  28. 28.
    Kashiwagi, Y.; Yamamoto, M.; Nakamoto, M. Facile Size-Regulated Synthesis of Silver Nanoparticles by Controlled Thermolysis of Silver Alkylcarboxylates in the Presence of Alkylamines with Different Chain Lengths. J. Colloid Interface Sci. 2006, 300(1), 169–175.CrossRefGoogle Scholar
  29. 29.
    Rotstein, N. P.; Aveldano, M. L.; Barrantes, F. T.; Politi, L. E. Docosahexaenoic Acid is Required for the Survival of Rat Retinal Photoreceptors In Vitro. J. Neurochem. 1996, 66(5), 1851–1859.CrossRefGoogle Scholar
  30. 30.
    Rotsfein, N. P.; Aveldano, M. L.; Barrantes, F. J.; Roccamo, A. M.; Politi, L. E. Apoptosis of Retina! Photoreceptors During Development In Vitro: protective effect of docosahexaenoic acid. J. Neurochem. 1997, 69(2), 504–513.CrossRefGoogle Scholar
  31. 31.
    Suzuki, M.; Kamei, M.; Itabe, H.; Yoneda, K.; Bando, H.; Kurne, N.; Tano, Y. Oxidized Phospholipids in the Macula Increase with Age and in Eyes with Age-Related Macular Degeneration. Mol. Vis. 2007, 13 772–778.Google Scholar
  32. 32.
    Pan, H. Z.; Zhang, H.; Chang, D.; Li, H.; Sui, H. The Change of Oxidative Stress Products in Diabetes Mellitus and Diabetic Retinopathy. Br. J. Ophthalmol. 2008, 92(4), 548–551.CrossRefGoogle Scholar
  33. 33.
    Ford, D. A.; Monda, J. K.; Brush, R. S.; Anderson, R. E.; Richards, M. J.; Fliesler, S. J. Lipidomic Analysis of the Retina in a Rat Model of Smith-Lemli-Opitz Syndrome: Alterations in Docosahexaenoic Acid Content of Phospholipid Molecular Species. J. Neurochem. 2008, 105(3), 1032–1047.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2010

Authors and Affiliations

  • Takahiro Hayasaka
    • 1
  • Naoko Goto-Inoue
    • 1
  • Nobuhiro Zaima
    • 1
  • Kamlesh Shrivas
    • 1
    • 2
  • Yukiyasu Kashiwagi
    • 3
  • Mari Yamamoto
    • 3
  • Masami Nakamoto
    • 3
  • Mitsutoshi Setou
    • 1
  1. 1.Department of Molecular Anatomy, Molecular Imaging Frontier Research CenterHamamatsu University School of MedicineShizuokaJapan
  2. 2.Japan Society for the Promotion of Science (JSPS)TokyoJapan
  3. 3.Osaka Municipal Technical Research InstituteOsakaJapan

Personalised recommendations