Ion-pair evaporation from ionic liquid clusters

  • Christopher J. Hogan
  • Juan Fernandez de la Mora
Short Communication


A differential mobility analyzer (DMA) is used in atmospheric pressure N2 to select a narrow range of electrical mobilities from a complex mix of cluster ions of composition (CA)n(C+)z. The clusters are introduced into the N2 gas by electrospraying concentrated (∼20 mM) acetonitrile solutions of ionic liquids (molten salts) of composition CA (C+ = cation, A = anion). Mass analysis of these mobility-selected ions reveals the occurrence of individual neutral ion-pair evaporation events from the smallest singly charged clusters: (CA)nC+→(CA)n− 1C++CA. Although bulk ionic liquids are effectively involatile at room temperature, up to six sequential evaporation events are observed. Because this requires far more internal energy than available in the original clusters, substantial heating (∼10 eV) must take place in the ion guides leading to the mass analyzer. The observed increase in IL evaporation rate with decreasing size is drastic, in qualitative agreement with the exponential vapor pressure dependence predicted by Kelvin’s formula. A single evaporation event is barely detectable at n = 13, while two or more are prominent for n ≤ 9. Magic number clusters (CA)4C+ with singularly low volatilities are found in three of the four ionic liquids studied. Like their recently reported liquid phase prenucleation cluster analogs, these magic number clusters could play a key role as gas-phase nucleation seeds. All the singularly involatile clusters seen are cations, which may help understand commonly observed sign effects in ion-induced nucleation. No other charge-sign asymmetry is seen on cluster evaporation.


Ionic Liquid Electrical Mobility Evaporation Event Charged Cluster Differential Mobility Analyzer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Fernandez de la Mora, J.; de Juan, L.; Eichler, T.; Resell, J. Differential Mobility Analysis of Molecular Ions and Nanometer Particles. Trends Anal. Chem. 1998, 17(6), 328–339.CrossRefGoogle Scholar
  2. 2.
    Knutson, E. O.; Whitby, K. T. Aerosol Classification. by Electric Mobility: Apparatus, Theory, and Applications. J. Aerosol Sci. 1975, 6, 443–451.CrossRefGoogle Scholar
  3. 3.
    Rus, J.; Moro, D.; Sillero, J. A.; Royuela, J.; Casado, A.; Estevez-Molinero, F.; Fernandez de la Mora, J. IMS-MS Studies Based on Coupling a Differential Mobility Analyzer (DMA) to Commercial API-MS Systems. Int. J. Mass Spectrom. 2010, unpublished, (submitted).Google Scholar
  4. 4.
    Hogan, C. J.; Fernandez de la Mora, J. Tandem Ion Mobility-Mass Spectrometry (IMS-MS) Study of Ion Evaporation from Ionic Liquid-Acetonitrile Nanodrops. Phys. Chem., Chem. Phys. 2009, 11, 8079–8090.CrossRefGoogle Scholar
  5. 5.
    Ens, W.; Beavis, R.; Standing, K. G. Time-of-Flight Measurements of Cesium-Iodide Cluster Ions. Phys. Rev Lett. 1983, 50(1), 27–30.CrossRefGoogle Scholar
  6. 6.
    Drewello, T.; Herzschuh, J.; Stach, J. Direct Fission Versus Sequential Evaporation Mechanism of Spattered Caesium Iodide Cluster Ions. Z Phys. D 1993, 28(4), 339–343.CrossRefGoogle Scholar
  7. 7.
    Trimpin, S.; Clemmer, D. E. Ion Mobility Spectrometry/Mass Spectrometry Snapshots for Assessing the Molecular Compositions of Complex Polymeric Systems. Anal. Client. 2008, 80(23), 9073–9083.CrossRefGoogle Scholar
  8. 8.
    Ku, B. K.; Fernandez de la Mora, J. Relation Between Electrical Mobility, Mass, and Size for Nanodrops 1–6.5 nm in Diameter in Air. Aerosol Sci. Technol. 2009, 43(3), 241–249.CrossRefGoogle Scholar
  9. 9.
    Armstrong, J. P.; Hurst, C.; Jones, R. G.; Licence, P.; Lovelock, K. R. J.; Satterley, C. J.; Villar-Garcia, I. J. Vaporization of Ionic Liquids. Phys. Chem., Chem. Phys. 2007, 9, 982–990.CrossRefGoogle Scholar
  10. 10.
    Earle, M. J.; Esperanca, J. M. S. S.; Gilea, M. A.; Lopes, J. N. C.; Rebelo, L. P. N.; Magee, J. W.; Seddon, K. R.; Widegren, J. A. The Distillation and Volatility of Ionic Liquids. Nature 2006, 439(7078), 831–834.CrossRefGoogle Scholar
  11. 11.
    Wasserscheid, P. Chemistry—Volatile Times for Ionic Liquids. Nature 2006, 439(7078), 797–797.CrossRefGoogle Scholar
  12. 12.
    Strasser, D.; Goulay, F.; Kelkar, M. S.; Maginn, E. J.; Leone, S. R. Photoelectron Spectrum of Isolated Ion-Pairs in Ionic Liquid Vapor. J. Phys. Chem. A 2007, 111(17), 3191–3195.CrossRefGoogle Scholar
  13. 13.
    Gross, J. H. Molecular Ions of Ionic Liquids in the Gas Phase. J. Am. Soc. Mass Spectrom. 2008, 19(9), 1347–1352.CrossRefGoogle Scholar
  14. 14.
    Sakurai, M.; Watanabe, K.; Sumiyama, K.; Suzuki, K. Magic Numbers in Transition Metal (Fe, Ti, Zr, Nb, and Ta) Clusters Observed by Time-of-Flight Mass Spectrometry. J. Chem. Phys. 1999, 111(1), 235–238.CrossRefGoogle Scholar
  15. 15.
    Gebauer, D.; Volkel, A.; Colfen, H. Stable Prenucleation. Calcium Carbonate Clusters. Science 2008, 322(5909), 1819–1822.CrossRefGoogle Scholar
  16. 16.
    Kaufman, S. L.; Dorman, F. D. Sucrose Clusters Exhibiting a Magic Number in Dilute Aqueous Solutions. Langmuir 2008, 24(18), 9979–9982.CrossRefGoogle Scholar
  17. 17.
    Girshick, S. L.; Agarwal, P.; Truhlar, D. G. Homogenous Nucleation with Magic Numbers: Aluminum. J. Chem. Phys. 2009, 131, 134305/1–11.CrossRefGoogle Scholar
  18. 18.
    Seto, T.; Okuyama, K.; deJuan, L.; Fernandez de la Mora, J. Condensation of Supersaturated Vapors on Monovalent and Divalent Ions of Varying Size. J. Chem. Phys. 1997, 107(5), 1576–1585.CrossRefGoogle Scholar
  19. 19.
    Friedlander, S. K. Smoke, Dust, and Haze; Oxford University Press: New York, 2000; p. 257, Eq. 9.17.Google Scholar

Copyright information

© American Society for Mass Spectrometry 2010

Authors and Affiliations

  • Christopher J. Hogan
    • 1
    • 2
  • Juan Fernandez de la Mora
    • 1
  1. 1.Department of Mechanical EngineeringYale UniversityNew HavenUSA
  2. 2.SEADMBoecilloSpain

Personalised recommendations