Mass spectrometric studies of alkali metal ion binding on thrombin-binding aptamer DNA



The binding sites and consecutive binding constants of alkali metal ions, (M+ = Na+, K+, Rb+, and Cs+), to thrombin-binding aptamer (TBA) DNA were studied by Fourier-transform ion cyclotron resonance spectrometry. TBA-metal complexes were produced by electrospray ionization (ESI) and the ions of interest were mass-selected for further characterization. The structural motif of TBA in an ESI solution was checked by circular dichroism. The metal-binding constants and sites were determined by the titration method and infrared multiphoton dissociation (IRMPD), respectively. The binding constant of potassium is 5–8 times greater than those of other alkali metal ions, and the potassium binding site is different from other metal binding sites. In the 1:1 TBA-metal complex, potassium is coordinated between the bottom G-quartet and two adjacent TT loops of TBA. In the 1:2 TBA—metal complex, the second potassium ion binds at the TGT loop of TBA, which is in line with the antiparallel G-quadruplex structure of TBA. On the other hand, other alkali metal ions bind at the lateral TGT loop in both 1:1 and 1:2 complexes, presumably due to the formation of ion-pair adducts. IRMPD studies of the binding sites in combination with measurements of the consecutive binding constants help elucidate the binding modes of alkali metal ions on DNA aptamer at the molecular level.

Supplementary material

13361_2011_210701245_MOESM1_ESM.doc (690 kb)
Supplementary material, approximately 707 KB.


  1. 1.
    Bock, L. C.; Griffin, L. C.; Latham, J. A.; Vermassa, E. H.; Toole, J. J. Selection of Single-Stranded DNA Molecules that Bind and Inhibit Human Thrombin. Nature 1992, 355, 564–564.CrossRefGoogle Scholar
  2. 2.
    Macaya, R. F.; Schultze, P.; Smith, F. W.; Roe, J. W.; Feigon, J. Thrombin-Binding DNA Aptamer Forms a Unimolecular Quadruplex Structure in Solution. Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 3745–3749.CrossRefGoogle Scholar
  3. 3.
    Wang, K. Y.; McCurdy, S.; Shea, R. G.; Swaminathan, S.; Bolton, P. H. A DNA. Aptamer which Binds to and Inhibits Thrombin Exhibits a New Structural Motif for DNA. Biochemistry 1993, 32, 1899–1904.CrossRefGoogle Scholar
  4. 4.
    Kelly, J. A.; Feigon, J.; Yeates, T. O. Reconciliation of the X-ray and NMR Structures of the Thrombin-Binding Aptamer d(GGTTGGTGTGGTTGG). J. Mol. Biol. 1996, 256, 417–422.CrossRefGoogle Scholar
  5. 5.
    Padmanabhan, K.; Padmanabhan, K. P.; Ferrara, J. D.; Sadler, J. E.; Tulinsky, A. The Structure of α-Thrombin Inhibited by a 15-mer Single-Stranded DNA Aptamer. J. Biol. Chem. 1993, 268, 17651–17654.Google Scholar
  6. 6.
    Padmanabhan, K.; Tulinsky, A. An Ambiguous Structure of a DNA 15-mer Thrombin Complex. Acta Cryst. 1996, D52, 272–282.Google Scholar
  7. 7.
    Hardin, C. C.; Watson, T.; Corregan, M.; Bailey, C. Cation-Dependent Transition between the Quadruplex and Watson-Crick Hairpin Forms of d(CGCG3GCG). Biochemistry 1992, 31, 833–841.CrossRefGoogle Scholar
  8. 8.
    Wong, A.; Wu, G. Selective Binding of Monovalent Cations to the Stacking G-Quartet Structure Formed by Guanosine 5′-Monophosphate: A Solid-State NMR Study. J. Am. Chem. Soc. 2003, 125, 13895–13905.CrossRefGoogle Scholar
  9. 9.
    Siddiqui-Jain, A.; Grand, C. L.; Bearss, D. J.; Hurley, L. H. Direct Evidence for a G-quadruplex in a Promoter Region and its Targeting with a Small Molecule to Repress c-MYC Transcription. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 11593–11598.CrossRefGoogle Scholar
  10. 10.
    Miyoshi, D.; Nakao, A.; Sugimoto, N. Structural Transition from Anti-parallel to Parallel G-quadruplex of d(G4T4G4) Induced by Ca2+. Nucleic Acids. Res. 2003, 31, 1156–1163.CrossRefGoogle Scholar
  11. 11.
    Marathias, V. M.; Bolton, P. H. Determinants of DNA Quadruplex Structural Type: Sequence and Potassium Binding. Biochemistry 1999, 38, 4355–4362.CrossRefGoogle Scholar
  12. 12.
    Kankia, B. I.; Marky, L. A. Folding of the Thrombin Aptamer into a G-quadruplex with Sr2+: Stability, Heat, and Hydration. J. Am. Chem. Soc. 2001, 123, 10799–10804.CrossRefGoogle Scholar
  13. 13.
    Vairamani, M.; Gross, M. L. G-Quadruplex Formation of Thrombin-Binding Aptamer Detected by Electrospray Ionization Mass Spectrometry. J. Am. Chem. Soc. 2003, 125, 42–43.CrossRefGoogle Scholar
  14. 14.
    Loo, J. A. Electrospray Ionization Mass Spectrometry: A Technology for Studying Noncovalent Macromolecular Complexes. Int. J. Mass Spectrom. 2000, 200, 175–186.CrossRefGoogle Scholar
  15. 15.
    Rosu, F.; De Pauw, E.; Gabelica, V. Electrospray Mass Spectrometry to Study Drug-Nucleic Acids Interactions. Biochimie 2008, 90, 1074–1087.CrossRefGoogle Scholar
  16. 16.
    Wilson, J. J.; Brodbelt, J. S. Infrared Multiphoton Dissociation of Duplex DNA/Drug Complexes in a Quadrupole Ion Trap. Anal. Chem. 2007, 79, 2067–2077.CrossRefGoogle Scholar
  17. 17.
    Mo, J.; Håkansson, K. Characterization of Nucleic Acid Higher Order Structure by High-Resolution Tandem Mass Spectrometry. Anal. Bioanal. Chem. 2006, 386, 675–681.CrossRefGoogle Scholar
  18. 18.
    Gabelica, V.; Rosu, F.; De Pauw, E.; Lemaire, J.; Gillet, J.-C.; Poully, J.-C.; Lecomte, F.; Grégoire, G.; Schermann, J.-P.; Desfrançois, C. Infrared Signature of DNA G-quadruplexes in the Gas Phase. J. Am. Chem. Soc. 2008, 130, 1810–1811.CrossRefGoogle Scholar
  19. 19.
    Sannes-Lowery, K. A.; Griffey, R. H.; Hofstadler, S. A. Measuring Dissociation Constants of RNA and Aminoglycoside Antibiotics by Electrospray Ionization Mass Spectrometry. Anal. Biochem. 2000, 280, 264–271.CrossRefGoogle Scholar
  20. 20.
    Gabelica, V.; Galic, N.; Rosu, F.; Houssier, C.; De Pauw, E. Influence of Response Factors on Determining Equilibrium Association Constants of Non-covalent Complexes by Electrospray Ionization Mass Spectrometry. J. Mass Spectrom. 2003, 38, 491–501.CrossRefGoogle Scholar
  21. 21.
    Zhang, S.; Van Pelt, C. K.; Wilson, D. B. Quantitative Determination of Noncovalent Binding Interactions Using Automated Nanoelectrospray Mass Spectrometry. Anal. Chem. 2003, 75, 3010–3018.CrossRefGoogle Scholar
  22. 22.
    Wortmann, A.; Rossi, F.; Lelais, G.; Zenobi, R. Determination of Zinc to beta-Peptide Binding Constant with Electrospray Ionization Mass Spectrometry. J. Mass Spectrom. 2005, 40, 777–784.CrossRefGoogle Scholar
  23. 23.
    Wilcox, J. M.; Rempel, D. L.; Gross, M. L. Method of Measuring Oligonucleotide-Metal Affinities: Interactions of the Thrombin Binding Aptamer with K+ and Sr2+. Anal. Chem. 2008, 80, 2365–2371.CrossRefGoogle Scholar
  24. 24.
    Gabelica, V.; Rosu, F.; De Pauw, E. A Simple Method to Determine Electrospray Response Factors of Noncovalent Complexes. Anal. Chem. 2009, 81, 6708–6715.CrossRefGoogle Scholar
  25. 25.
    Brodbelt, J. S.; Wilson, J. J. Infrared Multiphoton Dissociation in Quadrupole Ion Traps. Mass Spectrom. Rev. 2009, 28, 390–424.CrossRefGoogle Scholar
  26. 26.
    Little, D. P.; Speir, J. P.; Senko, M. W.; O’Connor, P. B.; McLafferty, F. W. Infrared Multiphoton Dissociation of Large Multiply Charged Ions for Biomolecule Sequencing. Anal. Chem. 1994, 66, 2809–2815.CrossRefGoogle Scholar
  27. 27.
    Little, D. P.; Aaserud, D. J.; Valaskovic, G. A.; McLafferty, F. W. Sequence Information from 42–108-mer DNAs (complete for a 50-mer) by Tandem Mass Spectrometry. J. Am. Chem. Soc. 1996, 118, 9352–9359.CrossRefGoogle Scholar
  28. 28.
    Sannes-Lowery, K. A.; Hofstadler, S. A. Sequence Confirmation of Modified Oligonucleotides Using IRMPD in the External Ion Reservoir of an Electrospray Ionization Fourier Transform Ion Cyclotron Mass Spectrometer. J. Am. Soc. Mass Spectrom. 2003, 14, 825–833.CrossRefGoogle Scholar
  29. 29.
    Keller, K. M.; Brodbelt, J. S. Collisionally-Activated Dissociation and Infrared Multiphoton Dissociation of Oligonucleotides in a Quadrupole Ion Trap. Anal. Biochem. 2004, 326, 200–210.CrossRefGoogle Scholar
  30. 30.
    Yim, Y.-H.; Kim, B.; Ahn, S.; So, H.-Y.; Lee, S.; Oh, H. B. Evaluation of the Internal Temperature of an 8.6 kDa Protein Cation Exposed to a Hot Dispenser Cathode Employed in Electron Capture Dissociation Mass Spectrometry. Rapid Commun. Mass Spectrom. 2006, 20, 1918–1924.CrossRefGoogle Scholar
  31. 31.
    Smirnov, I. V.; Shafer, R. H. Electrostatics Dominate Quadruplex Stability. Biopolymers 2007, 85, 91–101.CrossRefGoogle Scholar
  32. 32.
    Vorlíķová, M.; Bednářová, K.; Kejnovská, I.; Kypr, J. Intramolecular and Intermolecular Guanine Quadruplexes of DNA in Aqueous Salt and Ethanol Solutions. Biopolymers 2007, 86, 1–10.CrossRefGoogle Scholar
  33. 33.
    Katta, V.; Chait, B. T. Hydrogen/Deuterium Exchange Electrospray Ionization Mass Spectrometry: A Method for Probing Protein conformational Changes in Solution. J. Am. Chem. Soc. 1993, 115, 6317–6321.CrossRefGoogle Scholar
  34. 34.
    Kaltashov, I. A.; Eyles, S. J. Studies of Biomolecular Conformations and Conformational Dynamics by Mass Spectrometry. Mass Spectrom. Rev. 2002, 21, 37–71.CrossRefGoogle Scholar
  35. 35.
    Kumar, N.; Maiti, S. Quadruplex to Watson-Crick Duplex Transition of the Thrombin Binding Aptamer: A Fluorescence Resonance Energy Transfer Study. Biochem. Biophys. Res. Commun. 2004, 319, 759–767.CrossRefGoogle Scholar
  36. 36.
    Nagatoishi, S.; Tanaka, Y.; Tsumoto, K. Circular Dichroism Spectra Demonstrate Formation of the Thrombin-Binding DNA Aptamer G-quadruplex under Stabilizing-Cation-Deficient Conditions. Biochem. Biophys. Res. Commun. 2007, 352, 812–817.CrossRefGoogle Scholar
  37. 37.
    Marathias, V. M.; Bolton, P. H. Structures of the Potassium-Saturated, 2:1, and Intermediate, 1:1, Forms of a Quadruplex DNA. Nucleic. Acids. Res. 2000, 28, 1969–1977.CrossRefGoogle Scholar
  38. 38.
    Jørgensen, T. J. D.; Roepstorff, P. Direct Determination of Solution Binding Constants for Noncovalent Complexes between Bacterial Cell Wall Peptide Analogues and Vancomycin Group Antibiotics by Electrospray Ionization Mass Spectrometry. Anal. Chem. 1998, 70, 4427–4432.CrossRefGoogle Scholar
  39. 39.
    McLuckey, S. A.; Van Berkel, G. J.; Glish, G. L. Tandem Mass Spectrometry of Small, Multiply Charged Oligonucleotides. J. Am. Soc. Mass Spectrom. 1992, 3, 60–70.CrossRefGoogle Scholar
  40. 40.
    Mao, X. A.; Gmeiner, W. H. NMR. Study of the Folding-Unfolding Mechanism for the Thrombin-Binding DNA Aptamer d(GGTTGGTGTGGTTGG). Biophys. Chem. 2005, 113, 155–160.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2010

Authors and Affiliations

  1. 1.Bio-Nanotechnology Center, Department of ChemistryPohang University of Science and TechnologyPohangKorea
  2. 2.Division of Metrology for Quality LifeKorea Research Institute of Standards and ScienceDaejeonKorea

Personalised recommendations