Top-down mass spectrometry for sequencing of larger (up to 61 nt) RNA by CAD and EDD

Focus: Top-Down Mass Spectrometry

Abstract

We have studied the effect of solution additives on hydrolysis and charge state distribution in ESI MS of RNA. Lower and higher charge state ions can be electrosprayed from solutions containing 25 mM piperidine/25 mM imidazole and 1% vol. triethylamine, respectively, with base-catalyzed hydrolysis rates that are sufficiently slow to perform MS/MS experiments. These lower and higher charge state ions are suitable as precursors for CAD and EDD, respectively. We demonstrate nearly complete sequence coverage for 61 nt RNA dissociated by CAD, and 34 nt RNA dissociated by EDD, and suggest a mechanism for backbone fragmentation in EDD of RNA.

Supplementary material

13361_2011_210600918_MOESM1_ESM.pdf (3.4 mb)
Supplementary material, approximately 3519 KB.

References

  1. 1.
    Kelleher, N. L.; Lin, H. Y.; Valaskovic, G. A.; Aaserud, D. J.; Fridriksson, E. K.; McLafferty, F. W. Top Down Versus Bottom Up Protein Characterization by Tandem High-Resolution Mass Spectrometry. J. Am. Chem. Soc. 1999, 121, 806–812.CrossRefGoogle Scholar
  2. 2.
    Reid, G. E.; McLuckey, S. A. ‘Top Down’ Protein Characterization Via Tandem Mass Spectrometry. J. Mass Spectrom. 2002, 37, 663–675.CrossRefGoogle Scholar
  3. 3.
    Han, X. M.; Jin, M.; Breuker, K.; McLafferty, F. W. Extending Top-Down Mass Spectrometry to Proteins with Masses Greater than 200 Kilodaltons. Science 2006, 314, 109–112.CrossRefGoogle Scholar
  4. 4.
    McLafferty, F. W.; Breuker, K.; Jin, M.; Han, X. M.; Infusini, G.; Jiang, H.; Kong, X. G.; Begley, T. P. Top-Down MS, a Powerful Complement to the High Capabilities of Proteolysis Proteomics. FEBS J. 2007, 274, 6256–6268.CrossRefGoogle Scholar
  5. 5.
    Breuker, K.; Jin, M.; Han, X. M.; Jiang, H. H.; McLafferty, F. W. Top-Down Identification and Characterization of Biomolecules by Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2008, 19, 1045–1053.CrossRefGoogle Scholar
  6. 6.
    McLafferty, F. W.; Bente, P. F.; Kornfeld, R.; Tsai, S. C.; Howe, I. Collisional Activation Spectra of Organic Ions. J. Am. Chem. Soc. 1973, 95, 2120–2129.CrossRefGoogle Scholar
  7. 7.
    Laskin, J.; Futrell, J. H. Activation of Large Ions in FT-ICR Mass Spectrometry. Mass Spectrom. Rev. 2005, 24, 135–167.CrossRefGoogle Scholar
  8. 8.
    Laskin, J.; Futrell, J. H. Collisional Activation of Peptide Ions in FT-ICR Mass Spectrometry. Mass Spectrom. Rev. 2003, 22, 158–181.CrossRefGoogle Scholar
  9. 9.
    Zubarev, R. A.; Kelleher, N. L.; McLafferty, F. W. Electron Capture Dissociation of Multiply Charged Protein Cations. A Nonergodic Process. J. Am. Chem. Soc. 1998, 120, 3265–3266.CrossRefGoogle Scholar
  10. 10.
    Cooper, H. J.; Håkansson, K.; Marshall, A. G. The Role of Electron Capture Dissociation in Biomolecular Analysis. Mass Spectrom. Rev. 2005, 24, 201–222.CrossRefGoogle Scholar
  11. 11.
    Horn, D. M.; Ge, Y.; McLafferty, F. W. Activated Ion Electron Capture Dissociation for Mass Spectral Sequencing of Larger (42 kDa) Proteins. Anal. Chem. 2000, 72, 4778–4784.CrossRefGoogle Scholar
  12. 12.
    Breuker, K.; Oh, H. B.; Horn, D. M.; Cerda, B. A.; McLafferty, F. W. Detailed Unfolding and Folding of Gaseous Ubiquitin Ions Characterized by Electron Capture Dissociation. J. Am. Chem. Soc. 2002, 124, 6407–6420.CrossRefGoogle Scholar
  13. 13.
    Syka, J. E. P.; Coon, J. J.; Schroeder, M. J.; Shabanowitz, J.; Hunt, D. F. Peptide and Protein Sequence Analysis by Electron Transfer Dissociation Mass Spectrometry. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 9528–9533.CrossRefGoogle Scholar
  14. 14.
    McLuckey, S. A.; Vanberkel, G. J.; Glish, G. L. Tandem Mass-Spectrometry of Small, Multiply Charged Oligonucleotides. J. Am. Soc. Mass Spectrom. 1992, 3, 60–70.CrossRefGoogle Scholar
  15. 15.
    McLuckey, S. A. Habibigoudarzi, S. Decompositions of Multiply-Charged Oligonucleotide Anions. J. Am. Chem. Soc. 1993, 115, 12085–12095.CrossRefGoogle Scholar
  16. 16.
    Little, D. P.; Chorush, R. A.; Speir, J. P.; Senko, M. W.; Kelleher, N. L.; McLafferty, F. W. Rapid Sequencing of Oligonucleotides by High-Resolution Mass-Spectrometry. J. Am. Chem. Soc. 1994, 116, 4893–4897.CrossRefGoogle Scholar
  17. 17.
    Little, D. P.; Aaserud, D. J.; Valaskovic, G. A.; McLafferty, F. W. Sequence Information from 42-108-mer DNAs (Complete for a 50-mer) by Tandem Mass Spectrometry. J. Am. Chem. Soc. 1996, 118, 9352–9359.CrossRefGoogle Scholar
  18. 18.
    Wu, J.; McLuckey, S. A. Gas-Phase Fragmentation of Oligonucleotide Ions. Int. J. Mass Spectrom. 2004, 237, 197–241.CrossRefGoogle Scholar
  19. 19.
    Hüttenhofer, A.; Schattner, P.; Polacek, N. Non-Coding RNAs: Hope or Hype? Trends Genet. 2005, 21, 289–297.CrossRefGoogle Scholar
  20. 20.
    Kellersberger, K. A.; Yu, E.; Kruppa, G. H.; Young, M. M.; Fabris, D. Top-Down Characterization of Nucleic Acids Modified by Structural Probes Using High-Resolution Tandem Mass Spectrometry and Automated Data Interpretation. Anal. Chem. 2004, 76, 2438–2445.CrossRefGoogle Scholar
  21. 21.
    Turner, K. B.; Hagan, N. A.; Kohlway, A. S.; Fabris, D. Mapping Noncovalent Ligand Binding to Stemloop Domains of the HIV-1 Packaging Signal by Tandem Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2006, 17, 1401–1411.CrossRefGoogle Scholar
  22. 22.
    Keller, K. M.; Breeden, M. M.; Zhang, J. M.; Ellington, A. D.; Brodbelt, J. S. Electrospray Ionization of Nucleic Acid Aptamer/Small Molecule Complexes for Screening Aptamer Selectivity. J. Mass Spectrom. 2005, 40, 1327–1337.CrossRefGoogle Scholar
  23. 23.
    Griffey, R. H.; Hofstadler, S. A.; Sannes-Lowery, K. A.; Ecker, D. J.; Crooke, S. T. Determinants of Aminoglycoside-Binding Specificity for rRNA by Using Mass Spectrometry. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 10129–10133.CrossRefGoogle Scholar
  24. 24.
    Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. Electrospray Ionization for Mass Spectrometry of Large Biomolecules. Science 1989, 246, 64–71.CrossRefGoogle Scholar
  25. 25.
    Huang, T. Y.; Liu, J.; Liang, X. R.; Hodges, B. D. M.; McLuckey, S. A. Collision-Induced Dissociation of Intact Duplex and Single-Stranded siRNA Anions. Anal. Chem. 2008, 80, 8501–8508.CrossRefGoogle Scholar
  26. 26.
    Taucher, M.; Rieder, U.; Breuker, K. Minimizing Base Loss and Internal Fragmentation in Collisionally Activated Dissociation of Multiply Deprotonated RNA. J. Am. Soc. Mass Spectrom. 2010, 21, 278–285.CrossRefGoogle Scholar
  27. 27.
    Huang, T. Y.; Kharlamova, A.; Liu, J.; McLuckey, S. A. Ion Trap Collision-Induced Dissociation of Multiply Deprotonated RNA: c/y- Ions Versus (a-B)/w-Ions. J. Am. Soc. Mass Spectrom. 2008, 19, 1832–1840.CrossRefGoogle Scholar
  28. 28.
    Wolff, J. J.; Laremore, T. N.; Busch, A. M.; Linhardt, R. J.; Amster, I. J. Influence of Charge State and Sodium Cationization on the Electron Detachment Dissociation and Infrared Multiphoton Dissociation of Glycosaminoglycan Oligosaccharides. J. Am. Soc. Mass Spectrom. 2008, 19, 790–798.CrossRefGoogle Scholar
  29. 29.
    Yang, J.; Håkansson, K. Characterization and Optimization of Electron Detachment Dissociation Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Int. J. Mass Spectrom. 2008, 276, 144–148.CrossRefGoogle Scholar
  30. 30.
    Budnik, B. A.; Haselmann, K. F.; Zubarev, R. A. Electron Detachment Dissociation of Peptide Di-Anions: An Electron-Hole Recombination Phenomenon. Chem. Phys. Lett. 2001, 342, 299–302.CrossRefGoogle Scholar
  31. 31.
    Kjeldsen, F.; Silivra, O. A.; Ivonin, I. A.; Haselmann, K. F.; Gorshkov, M.; Zubarev, R. A. C.- and α-C Backbone Fragmentation Dominates in Electron Detachment Dissociation of Gas-Phase Polypeptide Polyanions. Chem. A Eur. J. 2005, 11, 1803–1812.CrossRefGoogle Scholar
  32. 32.
    Liu, H.; Håkansson, K. Electron Capture Dissociation of Tyrosine O-Sulfated Peptides Complexed with Divalent Metal Cations. Anal. Chem. 2006, 78, 7570–7576.CrossRefGoogle Scholar
  33. 33.
    Kjeldsen, F.; Horning, O. B.; Jensen, S. S.; Giessing, A. M. B.; Jensen, O. N. Towards Liquid Chromatography Time-Scale Peptide Sequencing and Characterization of Post-Translational Modifications in the Negative-Ion Mode Using Electron Detachment Dissociation Tandem Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2008, 19, 1156–1162.CrossRefGoogle Scholar
  34. 34.
    Yang, J.; Mo, J. J.; Adamson, J. T.; Håkansson, K. Characterization of Oligodeoxynucleotides by Electron Detachment Dissociation Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Anal. Chem. 2005, 77, 1876–1882.CrossRefGoogle Scholar
  35. 35.
    Yang, J.; Håkansson, K. Fragmentation of Oligoribonucleotides from Gas-Phase Ion-Electron Reactions. J. Am. Soc. Mass Spectrom. 2006, 17, 1369–1375.CrossRefGoogle Scholar
  36. 36.
    Mo, J. J.; Håkansson, K. Characterization of Nucleic Acid Higher Order Structure by High-Resolution Tandem Mass Spectrometry. Anal. Bioanal. Chem. 2006, 386, 675–681.CrossRefGoogle Scholar
  37. 37.
    Kinet, C.; Gabelica, V.; Balbeur, D.; De Pauw, E. Electron Detachment Dissociation (EDD) Pathways in Oligonucleotides. Int. J. Mass Spectrom. 2009, 283, 206–213.CrossRefGoogle Scholar
  38. 38.
    Yang, J.; Håkansson, K. Characterization of Oligodeoxynucleotide Fragmentation Pathways in Infrared Multiphoton Dissociation and Electron Detachment Dissociation by Fourier Transform Ion Cyclotron Double Resonance. Eur. J. Mass Spectrom. 2009, 15, 293–304.CrossRefGoogle Scholar
  39. 39.
    Wolff, J. J.; Amster, I. J.; Chi, L. L.; Linhardt, R. J. Electron Detachment Dissociation of Glycosaminoglycan Tetrasaccharides. J. Am. Soc. Mass Spectrom. 2007, 18, 234–244.CrossRefGoogle Scholar
  40. 40.
    Wolff, J. J.; Chi, L. L.; Linhardt, R. J.; Amster, I. J. Distinguishing Glucuronic from Iduronic Acid in Glycosaminoglycan Tetrasaccharides by Using Electron Detachment Dissociation. Anal. Chem. 2007, 79, 2015–2022.CrossRefGoogle Scholar
  41. 41.
    Leach, F. E.; Wolff, J. J.; Laremore, T. N.; Linhardt, R. J.; Amster, I. J. Evaluation of the Experimental Parameters Which Control Electron Detachment Dissociation, and Their Effect on the Fragmentation Efficiency of Glycosaminoglycan Carbohydrates. Int. J. Mass Spectrom. 2008, 276, 110–115.CrossRefGoogle Scholar
  42. 42.
    Wolff, J. J.; Laremore, T. N.; Aslam, H.; Linhardt, R. J.; Amster, I. J. Electron-Induced Dissociation of Glycosaminoglycan Tetrasaccharides. J. Am. Soc. Mass Spectrom. 2008, 19, 1449–1458.CrossRefGoogle Scholar
  43. 43.
    Wolff, J. J.; Laremore, T. N.; Busch, A. M.; Linhardt, R. J.; Amster, I. J. Electron Detachment Dissociation of Dermatan Sulfate Oligosaccharides. J. Am. Soc. Mass Spectrom. 2008, 19, 294–304.CrossRefGoogle Scholar
  44. 44.
    Yang, J.; Håkansson, K. Fragmentation of Oligoribonucleotides from Gas-Phase Ion-Electron Reactions. J. Am. Soc. Mass Spectrom. 2006, 17, 1369–1375.CrossRefGoogle Scholar
  45. 45.
    Micura, R. Small Interfering RNAs and Their Chemical Synthesis. Angew. Chem. Int. Ed. 2002, 41, 2265–2269.CrossRefGoogle Scholar
  46. 46.
    Greig, M.; Griffey, R. H. Utility of Organic-Bases for Improved Electrospray Mass-Spectrometry of Oligonucleotides. Rapid Commun. Mass Spectrom. 1995, 9, 97–102.CrossRefGoogle Scholar
  47. 47.
    Schnier, P. D.; Gross, D. S.; Williams, E. R. On the Maximum Charge-State and Proton-Transfer Reactivity of Peptide and Protein Ions Formed by Electrospray-Ionization. J. Am. Soc. Mass Spectrom. 1995, 6, 1086–1097.CrossRefGoogle Scholar
  48. 48.
    Iavarone, A. T.; Williams, E. R. Mechanism of Charging and Supercharging Molecules in Electrospray Ionization. J. Am. Chem. Soc. 2003, 125, 2319–2327.CrossRefGoogle Scholar
  49. 49.
    Marshall, A. G.; Hendrickson, C. L. Charge Reduction Lowers Mass Resolving Power for Isotopically Resolved Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectra. Rapid Commun. Mass Spectrom. 2001, 15, 232–235.CrossRefGoogle Scholar
  50. 50.
    Moradian, A.; Scalf, M.; Westphall, M. S.; Smith, L. M.; Douglas, D. J. Collision Cross Sections of Gas Phase DNA Ions. Int. J. Mass Spectrom. 2002, 219, 161–170.CrossRefGoogle Scholar
  51. 51.
    Verkin, B. I.; Sukhodub, L. F.; Yanson, I. K. Potentials of Ionization of Nitrogen Bases of Nucleic-Acids. Doklady Akademii Nauk SSSR 1976, 228, 1452–1455.Google Scholar
  52. 52.
    Galenica, V.; Tabarin, T.; Antoine, R.; Rosu, F.; Compagnon, I.; Broyer, M.; De Pauw, E.; Dugourd, P. Electron Photodetachment Dissociation of DNA Polyanions in a Quadrupole Ion Trap Mass Spectrometer. Anal. Chem. 2006, 78, 6564–6572.CrossRefGoogle Scholar
  53. 53.
    Randerath, K.; Zhou, G. D.; Somers, R. L.; Robbins, J. H.; Brooks, P. J. A P-32-Postlabeling Assay for the Oxidative DNA Lesion 8,5′-Cyclo-2′- Deoxyadenosine in Mammalian Tissues—Evidence That Four Type II I-Compounds are Dinucleotides Containing the Lesion in the 3′ Nucleotide. J. Biol. Chem. 2001, 276, 36051–36057.CrossRefGoogle Scholar
  54. 54.
    Dizdaroglu, M.; Jaruga, P.; Rodriguez, H. Identification and Quantification of 8,5′-Cyclo-2′-Deoxyadenosine in DNA by Liquid Chromatography/Mass Spectrometry. Free Rad. Biol. Med. 2001, 30, 774–784.CrossRefGoogle Scholar
  55. 55.
    Jaruga, P.; Birincioglu, M.; Rodriguez, H.; Dizdaroglu, M. Mass Spectrometric Assays for the Tandem Lesion 8,5′-Cyclo-2′-Deoxyguanosine in Mammalian DNA. Biochemistry 2002, 41, 3703–3711.CrossRefGoogle Scholar
  56. 56.
    Zhang, R. B.; Eriksson, L. A. Theoretical Study of the Tandem Cross-Linkage Lesion in DNA. Chem. Phys. Lett. 2006, 417, 303–308.CrossRefGoogle Scholar
  57. 57.
    Iavarone, A. T.; Williams, E. R. Supercharging in Electrospray Ionization: Effects on Signal and Charge. Int. J. Mass Spectrom. 2002, 219, 63–72.CrossRefGoogle Scholar
  58. 58.
    Iavarone, A. T.; Williams, E. R. Mechanism of Charging and Supercharging Molecules in Electrospray Ionization. J. Am. Chem. Soc. 2003, 125, 2319–2327.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2010

Authors and Affiliations

  1. 1.Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI)University of InnsbruckInnsbruckAustria

Personalised recommendations