Advertisement

Separation of isomers L-alanine and sarcosine in urine by electrospray ionization and tandem differential mobility analysis-mass spectrometry

  • Pablo Martínez-Lozano
  • Juan Rus
Short Communication

Abstract

Sarcosine, an isomer of L-alanine, has been proposed as a prostate cancer progression biomarker [1]. Both compounds are detected in urine, where the measured sarcosine/alanine ratio has been found to be higher in prostate biopsy-positive group versus controls. We present here preliminary evidence showing that urine samples spiked with sarcosine/alanine can be partially resolved in 3 min via tandem differential mobility analysis-mass spectrometry (DMA-MS). Based on the calibration curves obtained for two mobility peaks, we finally estimate their concentration ratio in urine.

Keywords

Collision Induce Dissociation Sarcosine Mobility Spectrum Differential Mobility Analyzer Collision Induce Dissociation Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

13361_2011_210701129_MOESM1_ESM.doc (1.3 mb)
Supplementary material, approximately 1318 KB.

References

  1. 1.
    Sreekumar, A.; Poisson, L. M.; Rajendiran, T. M.; Khan, A. P.; Cao, Q.; Yu, J.; Laxman, B.; Mehra, R.; Lonigro, R. J.; Li, Y.; Nyati, M. K.; Ahsan, A.; Kalyana-Sundaram, S.; Han, B.; Cao, X.; Byun, J.; Omenn, G. S.; Ghosh, D.; Pennathur, S.; Alexander, D. C.; Berger, A.; Shuster, J. R.; Wei, J. T.; Varambally, S.; Beecher, C.; Chinnaiyan, A. M. Metabolomic Profiles Delineate Potential Role for Sarcosine in Prostate Cancer Progression. Nature 2009, 457(7231), 910–914.CrossRefGoogle Scholar
  2. 2.
    Bernstein, S. L.; Liu, D. F.; Wyttenbach, T.; Bowers, M. T.; Lee, J. C.; Gray, H. B.; Winkler, J. R. α-Synuclein: Stable Compact and Extended Monomeric Structures and pH Dependence of Dimer Formation. J. Am. Soc. Mass Spectrom. 2004, 15, 1435–1443.CrossRefGoogle Scholar
  3. 3.
    Kaplan, K.; Dwivedi, P.; Davidson, S.; Yang, Q.; Tso, P.; Siems, W.; Hill, H. H. Monitoring Dynamic Changes in Lymph Metabolome of Fasting and Fed Rats by Electrospray Ionization-Ion Mobility Mass Spectrometry (ESI-IMMS). Anal. Chem. 2009, 81, 7944–7953.CrossRefGoogle Scholar
  4. 4.
    Rus, J.; Moro D.; Sillero J. A.; Royuela, J.; Casado, A.; Estévez-Molinero, F.; Fernández de la Mora, J. IMS-MS Studies Based on Coupling a Differential Mobility Analyzer (DMA) to Commercial API-MS Systems, unpublished (submitted).Google Scholar
  5. 5.
    Hogan, C. J.; Fernández de la Mora, J. Tandem Ion Mobility-Mass Spectrometry (IMS-MS) Study of Ion Evaporation from Ionic Liquid-Acetonitrile Nanodrops. Phys. Chem., Chem. Phys. 2009, 11, 8079–8090.CrossRefGoogle Scholar
  6. 6.
    Dookeran, N. N.; Yalcin, T.; Harrison, A. G. Fragmentation Reactions of Protonated α-Amino Acids. J. Mass Spectrom. 1996, 31, 500–508.CrossRefGoogle Scholar
  7. 7.
    Gamero-Castaño, M.; Fernández de la Mora, J. Mechanisms of Electrospray Ionization of Singly and Multiply Charged Salt Clusters. Anal. Chim. Acta 2000, 406, 67–91.CrossRefGoogle Scholar
  8. 8.
    Mason, E. A.; McDaniel, E. W. Transport Properties of Ions in Gases; Wiley: New York, 1988; p. 245.CrossRefGoogle Scholar
  9. 9.
    Johnson, P. V.; Kim, H. I.; Beegle, L. W.; Kanik, I. Electrospray Ionization Ion Mobility Spectrometry of Amino Acids: Ion Mobilities and a Mass-Mobility Correlation. J. Phys. Chem. A 2004, 108(27), 5785–5792.CrossRefGoogle Scholar
  10. 10.
    Shaykhutdinov, R. A.; MacInnis, G. D.; Dowlatabadi, R.; Weljie, A. M.; Vogel, H. J. Quantitative Analysis of Metabolite Concentrations in Human Urine Samples Using 13C1H NMR Spectroscopy. Metabolomics 2009, 5, 307–317.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2010

Authors and Affiliations

  1. 1.Institute for Biomedical Technologies-National Research CouncilSegrateItaly
  2. 2.SEADMValladolidSpain

Personalised recommendations