HPLC/APCI-FTICR-MS as a tool for identification of partial polar mutagenic compounds in effect-directed analysis

  • Mahmoud BatainehEmail author
  • Urte Lübcke-von Varel
  • Heiko Hayen
  • Werner Brack


Identification of unknown compounds remains one of the biggest challenges for the assignment of adverse effects of sediment contamination and other complex environmental mixtures to responsible toxicants by effect-directed analysis (EDA). The identification depends on information gained from biotesting, chromatographic separation, and mass spectrometric detection. Thus, a methodology is provided for non-target identification of partial polar mutagenic polyaromatic compounds in sediment extracts by using polymeric reversed-phase HPLC column, high-resolution mass spectrometry and PubChem database. After visualization and processing the chromatogram constituents by using deconvolution software, the unambiguous elemental compositions generated were used as input in PubChem database to find a possible identity for the suspected species. The retrieved structures from the database search were refined by characterized chromatographic and mass spectrometric classifiers based on 55 model compounds comprising eight different classes representing mutagenic substructures. The applicability of the method was demonstrated by positive and tentative identification of constituents of mutagenic sediment fractions similar to selected model compounds.


Polycyclic Aromatic Hydrocarbon Aceclofenac Tentative Identification Pressure Chemical Ionization Mass Spectrometry PubChem Database 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

13361_2011_210601016_MOESM1_ESM.doc (262 kb)
Supplementary material, approximately 269 KB.


  1. 1.
    Belpomme, D.; Irigaray, P.; Hardell, L.; Clapp, R.; Montagnier, L.; Epstein, S.; Sasco, A. J. The Multitude and Diversity of Environmental Carcinogens. Environ. Res. 2007, 105(3), 414–429.CrossRefGoogle Scholar
  2. 2.
    Finlayson-Pitts, B. J.; Pitts, J. J. N. Airborne Polycyclic Aromatic Hydrocarbons and Their Derivatives: Atmospheric Chemistry and Toxicological Implications. In Chemistry of the Upper and Lower Atmosphere; Academic Press: San Diego, 2000; p 436.Google Scholar
  3. 3.
    Kim, P. M.; DeBoni, U.; Wells, P. G. Peroxidase-Dependent Bioactivation and Oxidation of DNA and Protein in Benzo[a]Pyrene-Initiated Micronucleus Formation. Free Rad. Biol. Med. 1997, 23(4), 579–596.CrossRefGoogle Scholar
  4. 4.
    Brack, W. Effect-Directed Analysis: A Promising Tool for the Identification of Organic Toxicants in Complex Mixtures? Anal. Bioanal. Chem. 2003, 377(3), 397–407.CrossRefGoogle Scholar
  5. 5.
    Brack, W.; Klamer, H. J. C.; de Ada, M. L.; Barcelo, D. Effect-Directed Analysis of Key Toxicants in European River Basins—a review. Environ. Sci. Poll. Res. 2007, 14(1), 30–38.CrossRefGoogle Scholar
  6. 6.
    Hewitt, L. M.; Marvin, C. H. Analytical Methods in Environmental Effects-Directed Investigations of Effluents. Mut. Res. 2005, 589(3), 208–232.CrossRefGoogle Scholar
  7. 7.
    Brack, W.; Schmitt-Jansen, M.; Machala, M.; Brix, R.; Barcelo, D.; Schymanski, E.; Streck, G.; Schulze, T. How to Confirm Identified Toxicants in Effect-Directed Analysis. Anal. Bioanal. Chem. 2008, 390(8), 1959–1973.CrossRefGoogle Scholar
  8. 8.
    Schymanski, E. L.; Bataineh, M.; Goss, K. U.; Brack, W. Integrated Analytical and Computer Tools for Structure Elucidation in Effect-Directed Analysis. TrAC Trends Anal. Chem. 2009, 28(5), 550–561.CrossRefGoogle Scholar
  9. 9.
    Matsushita, T.; Matsui, Y.; Matsui, Y. Estimating Mutagenic Compounds Generated During Photolysis of Fenitrothion-by HPLC Fractionation Followed by Mutagenicity Testing and High-Resolution GC-MS Analysis. Chemosphere 2006, 64(1), 144–151.CrossRefGoogle Scholar
  10. 10.
    Watanabe, T.; Ohba, H.; Asanoma, M.; Hasei, T.; Takamura, T.; Terao, Y.; Shiozawa, T.; Hirayama, T.; Wakabayashi, K.; Nukaya, H. Isolation and Identification of Nonchlorinated Phenylbenzotriazole (non-ClPBTA)-Type Mutagens in the Ho River in Shizuoka Prefecture, Japan. Mutat. Res.—Genet. Toxicol. Environ. Mutagenesis 2006, 609(2), 137–145.CrossRefGoogle Scholar
  11. 11.
    Kami, H.; Watanabe, T.; Takemura, S.; Kameda, Y.; Hirayama, T. Isolation and Chemical-Structural Identification of a Novel Aromatic Amine Mutagen in an Ozonized Solution of m-Phenylenediamine. Chem. Res. Toxicol. 2000, 13(3), 165–169.CrossRefGoogle Scholar
  12. 12.
    Grung, M.; Lichtenthaler, R.; Ahel, M.; Tollefsen, K. E.; Langford, K.; Thomas, K. V. Effects-Directed Analysis of Organic Toxicants in Waste-water Effluent from Zagreb, Croatia. Chemosphere 2007, 67(1), 108–120.CrossRefGoogle Scholar
  13. 13.
    Brack, W.; Schirmer, K.; Erdinger, L.; Hollert, H. Effect-Directed Analysis of Mutagens and Ethoxyresorufin-O-Deethylase Inducers in Aquatic Sediments. Environ. Toxicol. Chem. 2005, 24(10), 2445–2458.CrossRefGoogle Scholar
  14. 14.
    Houtman, C. J.; Van Oostveen, A. M.; Brouwer, A.; Lamoree, M. H.; Legler, J. Identification of Estrogenic Compounds in Fish Bile Using Bioassay-Directed Fractionation. Environ. Sci. Technol. 2004, 38(23), 6415–6423.CrossRefGoogle Scholar
  15. 15.
    Bailey, H. C.; Elphick, J. R.; Krassoi, R.; Mulhall, A. M.; Lovell, A. J.; Slee, D. J. Identification of Chlorfenvinphos Toxicity in a Municipal Effluent in Sydney, New South Wales, Australia. Environ. Toxicol. Chem. 2005, 24(7), 1773–1778.CrossRefGoogle Scholar
  16. 16.
    Castillo, M.; Barcelo, D. Characterization of Organic Pollutants in Textile Wastewaters and Landfill Leachate by Using Toxicity-Based Fractionation Methods Followed by Liquid and Gas Chromatography Coupled to Mass Spectrometric Detection. Anal. Chim. Acta 2001, 426(2), 253–264.CrossRefGoogle Scholar
  17. 17.
    Biselli, S.; Reineke, N.; Heinzel, N.; Kammann, U.; Franke, S.; Huhnerfuss, H.; Theobald, N. Bioassay-Directed Fractionation of Organic Extracts of Marine Surface Sediments from the North and Baltic Sea. Part I: Determination and Identification of Organic Pollutants. J. Soils Sediments 2005, 5(3), 171–181.CrossRefGoogle Scholar
  18. 18.
    Thomas, K. V.; Hurst, M. R.; Matthiessen, P.; Waldock, M. J. Characterization of Estrogenic Compounds in Water Samples Collected from United Kingdom Estuaries. Environ. Toxicol. Chem. 2001, 20(10), 2165–2170.CrossRefGoogle Scholar
  19. 19.
    Thomas, K. V.; Balaam, J.; Barnard, N.; Dyer, R.; Jones, C.; Lavender, J.; McHugh, M. Characterization of Potentially Genotoxic Compounds in Sediments Collected from United Kingdom Estuaries. Chemosphere 2002, 49(3), 247–258.CrossRefGoogle Scholar
  20. 20.
    Koh, C. H.; Khim, J. S.; Villeneuve, D. L.; Kannan, K.; Giesy, J. P. Analysis of Trace Organic Contaminants in Sediment, Pore Water, and Water Samples from Onsan Bay, Korea: Instrumental Analysis and In Vitro Gene Expression Assay. Environ. Toxicol. Chem. 2002, 21(9), 1796–1803.CrossRefGoogle Scholar
  21. 21.
    Reineke, N.; Bester, K.; Huhnerfuss, H.; Jastorff, B.; Weigel, S. BioassayDirected Chemical Analysis of River Elbe Surface Water Including Large Volume Extractions and High Performance Fractionation. Chemosphere 2002, 47(7), 717–723.CrossRefGoogle Scholar
  22. 22.
    Noguchi, K.; Toriba, A.; Chung, S. W.; Kizu, R.; Hayakawa, K. Identification of Estrogenic/Anti-Estrogenic Compounds in Diesel Exhaust Particulate Extract. Biomed. Chromatogr. 2007, 21(11), 1135–1142.CrossRefGoogle Scholar
  23. 23.
    Grimalt, S.; Pozo, O. J.; Sancho, J. V.; Hernandez, F. Use of Liquid Chromatography Coupled to Quadrupole Time-of-Flight Mass Spectrometry to Investigate Pesticide Residues in Fruits. Anal. Chem. 2007, 79(7), 2833–2843.CrossRefGoogle Scholar
  24. 24.
    Perez, S.; Barcelo, D. First Evidence for Occurrence of Hydroxylated Human Metabolites of Diclofenac and Aceclofenac in Wastewater Using QqLIT-MS and QqTOF-MS. Anal. Chem. 2008, 80(21), 8135–8145.CrossRefGoogle Scholar
  25. 25.
    Reemtsma, T.; These, A.; Venkatachari, P.; Xia, X. Y.; Hopke, P. K.; Springer, A.; Linscheid, M. Identification of Fulvic Acids and Sulfated and Nitrated Analogues in Atmospheric Aerosol by Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Anal. Chem. 2006, 78(24), 8299–8304.CrossRefGoogle Scholar
  26. 26.
    Pace, C. M.; Betowski, L. D. Measurement of High-Molecular-Weight Polycyclic Aromatic Hydrocarbons in Soils by Particle Beam HighPerformance Liquid Chromatography-Mass Spectrometry. J. Am. Soc. Mass Spectrom. 1995, 6, 597–607.CrossRefGoogle Scholar
  27. 27.
    Bonfanti, L.; Careri, M.; Mangia, A.; Manini, P.; Maspero, M. Simultaneous Identification of Different Classes of Hydrocarbons and Determination of Nitro-Polycyclic Aromatic Hydrocarbons by Means of Particle Beam Liquid Chromatography-Mass Spectrometry. J. Chromatogr. A 1996, 728, 359–369.CrossRefGoogle Scholar
  28. 28.
    Moriwaki, H.; Ishitake, M.; Youhikawa, S.; Miyakoda, H.; Alary, J. F. Determination of Polycyclic Aromatic Hydrocarbons in Sediment by Liquid Chromatography-Atmospheric Pressure Photoionization-Mass Spectrometry. Analyt. Sci. 2004, 20, 375–377.CrossRefGoogle Scholar
  29. 29.
    Itoh, N.; Aoyagi, Y.; Yarita, T. Optimization of the Dopant for the Trace Determination of Polycyclic Aromatic Hydrocarbons by Liquid Chromatography/Dopant-Assisted Atmospheric-Pressure Photoionization/ Mass Spectrometry. J. Chromatogr. A 2006, 1131, 285–288.CrossRefGoogle Scholar
  30. 30.
    Hill, D. W.; Kertesz, T. M.; Fontaine, D.; Friedman, R.; Grant, D. F. Mass Spectral Metabonomics Beyond Elemental Formula: Chemical Database Querying by Matching Experimental with Computational Fragmentation Spectra. Anal. Chem. 2008, 80(14), 5574–5582.CrossRefGoogle Scholar
  31. 31.
    Polettini, A.; Gottardo, R.; Pascali, J. P.; Tagliaro, F. Implementation and Performance Evaluation of a Database of Chemical Formulas for the Screening of Pharmaco/Toxicologically Relevant Compounds in Biological Samples Using Electrospray Ionization-Time-of-Flight Mass Spectrometry. Anal. Chem. 2008, 80(8), 3050–3057.CrossRefGoogle Scholar
  32. 32.
    Thurman, E. M.; Ferrer, I.; Fernandez-Alba, A. R. Matching Unknown Empirical Formulas to Chemical Structure Using LC/MS TOF Accurate Mass and Database Searching: Example of Unknown Pesticides on Tomato Skins. J. Chromatogr. A 2005, 1067(1-2), 127–134.CrossRefGoogle Scholar
  33. 33.
    Hao, H. P.; Cui, N.; Wang, G. J.; Xiang, B. R.; Liang, Y.; Xu, X. Y.; Zhang, H.; Yang, J.; Zheng, C. N.; Wu, L.; Gong, P.; Wang, W. Global Detection and Identification of Nontarget Components from Herbal Preparations by Liquid Chromatography Hybrid Ion Trap Time-of-Flight Mass Spectrometry and a Strategy. Anal. Chem. 2008, 80(21), 8187–8194.CrossRefGoogle Scholar
  34. 34.
    Katajamaa, M.; Oresic, M. Processing Methods for Differential Analysis of LC/MS Profile Data. BMC Bioinformatics 2005, 6: 179, 1–12.Google Scholar
  35. 35.
    Katajamaa, M.; Miettinen, J.; Oresic, M. MZmine: Toolbox for Processing and Visualization of Mass Spectrometry-Based Molecular Profile Data. Bioinformatics 2006, 22(5), 634–636.CrossRefGoogle Scholar
  36. 36.
    Katajamaa, M.; Oresic, M. Data Processing for Mass Spectrometry-Based Metabolomics. J. Chromatogr. A 2007, 1158(1-2), 318–328.CrossRefGoogle Scholar
  37. 37.
    Lübcke-von Varel, U.; Streck, G.; Brack, W. Automated Fractionation Procedure for Polycyclic Aromatic Compounds in Sediment Extracts on Three Coupled Normal-Phase High-Performance Liquid Chromatography Columns. J. Chromatogr. A 2008, 1185(1), 31–42.CrossRefGoogle Scholar
  38. 38.
    Lübcke-von Varel, U. 2009, unpublished (manuscript in preparation).Google Scholar
  39. 39.
    Wise, S. A.; Bonnett, W. J.; Guenther, F. R.; May, W. E. A Relationship Between Reversed-Phase C18 Liquid-Chromatographic Retention and the Shape of Polycyclic Aromatic-Hydrocarbons. J. Chromatogr. Sci. 1981, 19(9), 457–465.CrossRefGoogle Scholar
  40. 40.
    Letzel, T.; Poschl, U.; Wissiack, R.; Rosenberg, E.; Grasserbauer, M.; Niessner, R. Phenyl-Modified Reversed-Phase Liquid Chromatography Coupled to Atmospheric Pressure Chemical Ionization Mass Spectrometry: A Universal Method for the Analysis of Partially Oxidized Aromatic Hydrocarbons. Anal. Chem. 2001, 73(7), 1634–1645.CrossRefGoogle Scholar
  41. 41.
    Straube, E. A.; Dekant, W.; Volkel, W. Comparison of Electrospray Ionization, Atmospheric Pressure Chemical Ionization, and Atmospheric Pressure Photoionization for the Analysis of Dinitropyrene and Aminonitropyrene LC-MS/MS. J. Am. Soc. Mass Spectrom. 2004, 15(12), 1853–1862.CrossRefGoogle Scholar
  42. 42.
    Letzel, T.; Poschl, U.; Rosenberg, E.; Grasserbauer, M.; Niessner, R. In-Source Fragmentation of Partially Oxidized Mono- and Polycyclic Aromatic Hydrocarbons in Atmospheric Pressure Chemical Ionization Mass Spectrometry Coupled to Liquid Chromatography. Rapid Commun. Mass Spectrom. 1999, 13(24), 2456–2468.CrossRefGoogle Scholar
  43. 43.
    Letzel, T.; Rosenberg, E.; Wissiack, R.; Grasserbauer, M.; Niessner, R. Separation and Identification of Polar Degradation Products of Benzo Pyrene with Ozone by Atmospheric Pressure Chemical Ionization-Mass Spectrometry After Optimized Column Chromatographic CleanUp. J. Chromatogr. A 1999, 855(2), 501–514.CrossRefGoogle Scholar
  44. 44.
    Galceran, M. T.; Moyano, E. Determination of Hydroxy Polycyclic Aromatic Hydrocarbons by Liquid Chromatography Mass Spectrometry— Comparison of Atmospheric Pressure Chemical Ionization and Electrospray. J. Chromatogr. A 1996, 731(1-2), 75–84.CrossRefGoogle Scholar
  45. 45.
    Grosse, S.; Letzel, T. Liquid Chromatography/Atmospheric Pressure Ionization Mass Spectrometry with Post-Column Liquid Mixing for the Efficient Determination of Partially Oxidized Polycyclic Aromatic Hydrocarbons. J. Chromatogr. A 2007, 1139(1), 75–83.CrossRefGoogle Scholar
  46. 46.
    Castillo, M.; Alpendurada, M. F.; Barcelo, D. Characterization of Organic Pollutants in Industrial Effluents Using Liquid Chromatography Atmospheric Pressure Chemical Ionization Mass Spectrometry. J. Mass Spectrom. 1997, 32(10), 1100–1110.CrossRefGoogle Scholar
  47. 47.
    Straube, E.; Dekant, W.; Volkel, W. Enhanced Sensitivity for the Determination of Amphiphilic Polyaromatic Amines by LC-MS/MS after Acetylation. J. Chromatogr. A 2005, 1067(1-2), 181–190.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2010

Authors and Affiliations

  • Mahmoud Bataineh
    • 1
    • 2
    Email author
  • Urte Lübcke-von Varel
    • 1
  • Heiko Hayen
    • 3
  • Werner Brack
    • 1
  1. 1.Department of Effect-Directed AnalysisUFZ-Helmholtz Centre for Environmental ResearchLeipzigGermany
  2. 2.Department of Chemical EngineeringAbu Dhabi Men’s CollegeAbu DhabiUnited Arab Emirates
  3. 3.Leibniz-Institut für Analytische Wissenschaften -ISAS-e.V.DortmundGermany

Personalised recommendations