Gas phase structure of micro-hydrated [Mn(ClO4)]+ and [Mn2(ClO4)3]+ ions probed by infrared spectroscopy

  • Rajeev K. Sinha
  • Edith Nicol
  • Vincent Steinmetz
  • Philippe Maître
Focus: Ion Spectroscopy


Gas-phase infrared photodissociation spectroscopy is reported for the microsolvated [Mn(ClO4)(H2O) n ]+ and [Mn2(ClO4)3(H2O) n ]+ complexes from n = 2 to 5. Electrosprayed ions are isolated in an ion-trap where they are photodissociated. The 2600–3800 cm−1 spectral region associated with the OH stretching mode is scanned with a relatively low-power infrared table-top laser, which is used in combination with a CO2 laser to enhance the photofragmentation yield of these strongly bound ions. Hydrogen bonding is evidenced by a relatively broad band red-shifted from the free OH region. Band assignment based on quantum chemical calculations suggest that there is formation of water—perchlorate hydrogen bond within the first coordination shell of high-spin Mn(II). Although the observed spectral features are also compatible with the formation of structures with double-acceptor water in the second shell, these structures are found relatively high in energy compared with structures with all water directly bound to manganese. Using the highly intense IR beam of the free electron laser CLIO in the 800–1700 cm−1, we were also able to characterize the coordination mode (η2) of perchlorate for two clusters. The comparison of experimental and calculated spectra suggests that the perchlorate Cl—O stretches are unexpectedly underestimated at the B3LYP level, while they are correctly described at the MP2 level allowing for spectral assignment.


Perchlorate Coordination Mode Collision Induce Dissociation Coordination Shell B3LYP Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

13361_2011_210500758_MOESM1_ESM.ppt (50 kb)
Supplementary material, approximately 51 KB.
13361_2011_210500758_MOESM2_ESM.doc (22 kb)
Supplementary material, approximately 23 KB.
13361_2011_210500758_MOESM3_ESM.ppt (61 kb)
Supplementary material, approximately 62 KB.


  1. 1.
    Burgess, J. Metal Ions in Solution; Wiley: London, 1978.Google Scholar
  2. 2.
    Richen, D. T. The Chemistry of Aqua Ions; John-Wiley: Chichester; New York, 1997.Google Scholar
  3. 3.
    Kebarle, P. Ion Thermochemistry and Solvation from Gas Phase Ion Equilibria. Annu. Rev. Phys. Chem. 1977, 28(1), 445–476.CrossRefGoogle Scholar
  4. 4.
    Castleman, A. W.; Keesee, R. G. Ionic Clusters. Chem. Rev. 1986, 86(3), 589–618.CrossRefGoogle Scholar
  5. 5.
    Beyer, M. K. Hydrated Metal Ions in the Gas Phase. Mass Spectrom. Rev. 2007, 26(4), 517–541.CrossRefGoogle Scholar
  6. 6.
    Rodgers, M. T.; Armentrout, P. B. Noncovalent Metal-Ligand Bond Energies as Studied by Threshold Collision-Induced Dissociation. Mass Spectrom. Rev. 2000, 19(4), 215–247.CrossRefGoogle Scholar
  7. 7.
    Stace, A. J. Metal ions in Hydrogen Bonded Solvents: A Gas Phase Perspective. Phys. Chem., Chem. Phys. 2001, 3(11), 1935–1941.CrossRefGoogle Scholar
  8. 8.
    Duncan, M. A. Infrared Spectroscopy to Probe Structure and Dynamics in Metal Ion-Molecule Complexes. Int. Rev. Phys. Chem. 2003, 22(2), 407–435.CrossRefGoogle Scholar
  9. 9.
    Walker, N. R.; Walters, R. S.; Duncan, M. A. Frontiers in the Infrared Spectroscopy of Gas Phase Metal Ion Complexes. New J. Chem. 2005, 29(12), 1495–1503.CrossRefGoogle Scholar
  10. 10.
    Lisy, J. M. Spectroscopy and Structure of Solvated Alkali-Metal Ions. Int. Rev. Phys. Chem. 1997, 16(3), 267–289.CrossRefGoogle Scholar
  11. 11.
    Headrick, J. M.; Diken, E. G.; Walters, R. S.; Hammer, N. I.; Christie, R. A.; Cui, J.; Myshakin, E. M.; Duncan, M. A.; Johnson, M. A.; Jordan, K. D. Spectral Signatures of Hydrated Proton Vibrations in Water Clusters. Science 2005, 308(5729), 1765–1769.CrossRefGoogle Scholar
  12. 12.
    Weinheimer, C. J.; Lisy, J. M. Vibrational Predissociation Spectroscopy of Cs+H2O1–5. J. Chem. Phys. 1996, 105(7), 2938–2941.CrossRefGoogle Scholar
  13. 13.
    Patwari, G. N.; Lisy, J. M. IR Photodissociation Spectroscopy of Na+[H2O](m) [C6F6](n) clusters: Evidence for Separation of Aqueous and Nonaqueous Phases. J. Phys. Chem. A 2003, 107(45), 9495–9498.CrossRefGoogle Scholar
  14. 14.
    Patwari, G. N.; Lisy, J. M. Mimicking the Solvation of Aqueous Na+ in the Gas Phase. J. Chem. Phys. 2003, 118(19), 8555–8558.CrossRefGoogle Scholar
  15. 15.
    Kolaski, M.; Lee, H. M.; Choi, Y. C.; Kim, K. S.; Tarakeshwar, P.; Miller, D. J.; Lisy, J. M. Structures, Energetics, and Spectra of Aqua—Cesium (I) Complexes: An Ab Initio and Experimental Study. J. Chem. Phys. 2007, 126(7), 074302–074311.CrossRefGoogle Scholar
  16. 16.
    Inokuchi, Y.; Ohshimo, K.; Misaizu, F.; Nishi, N. Infrared Photodissociation Spectroscopy of [Mg.(H2O)1–4]+ and [Mg.(H2O)1–4Ar1]+. J. Phys. Chem. A 2004, 108(23), 5034–5040.CrossRefGoogle Scholar
  17. 17.
    Inokuchi, Y.; Ohshimo, K.; Misaizu, F.; Nishi, N. Structures of [Mg.(H2O)1,2]+ and [Al.(H2O)1,2]+ Ions Studied by Infrared Photodissociation spectroscopy: evidence of [HO-Al-H]+ ion core structure in [Al.(H2O)2]+. Chem. Phys. Lett. 2004, 390(1–3), 140–144.CrossRefGoogle Scholar
  18. 18.
    Bush, M. F.; Saykally, R. J.; Williams, E. R. Infrared Action Spectra of Ca2+H2O11–69 Exhibit Spectral Signatures for Condensed-Phase Structures with Increasing Cluster Size. J. Am. Chem. Soc. 2008, 130(46), 15482–15489.CrossRefGoogle Scholar
  19. 19.
    Bush, M. F.; O’Brien, J. T.; Prell, J. S.; Wu, C. C.; Saylkally, R. J.; Williams, E. R. Hydration of Alkaline Earth Metal Dications: Effects of Metal Ion Size Determined Using Infrared Action Spectroscopy. J. Am. Chem. Soc. 2009, 131(37), 13270–13277.CrossRefGoogle Scholar
  20. 20.
    Rodriguez-Cruz, S. E.; Jockusch, R. A.; Williams, E. R. Hydration Energies and Structures of Alkaline Earth Metal Ions, M2+(H2O)n, n = 5–7, M = Mg, Ca, Sr, and Ba. J. Am. Chem. Soc. 1999, 121(38), 8898–8906.CrossRefGoogle Scholar
  21. 21.
    Rodriguez-Cruz, S. E.; Jockusch, R. A.; Williams, E. R. Binding Energies of Hexahydrated Alkaline Earth Metal Ions, M2+(H2O)6, M = Mg, Ca, Sr, Ba: Evidence of Isomeric Structures for Magnesium. J. Am. Chem. Soc. 1999, 121(9), 1986–1987.CrossRefGoogle Scholar
  22. 22.
    Walters, R. S.; Pillai, E. D.; Duncan, M. A. Solvation Dynamics in Ni+(H2O)n Clusters Probed with Infrared Spectroscopy. J. Am. Chem. Soc. 2005, 127(47), 16599–16610.CrossRefGoogle Scholar
  23. 23.
    Carnegie, P. D.; Bandyopadhyay, B.; Duncan, M. A. Infrared Spectroscopy of Cr+(H2O) and Cr2+(H2O): The Role of Charge in Cation Hydration. J. Phys. Chem. A 2008, 112(28), 6237–6243.CrossRefGoogle Scholar
  24. 24.
    Carnegie, P. D.; McCoy, A. B.; Duncan, M. A. IR Spectroscopy and Theory of Cu+(H2O)Ar-2 and Cu+(D2O)Ar-2 in the O—H (O—D) Stretching Region: Fundamentals and Combination Bands. J. Phys. Chem. A 2009, 113(17), 4849–4854.CrossRefGoogle Scholar
  25. 25.
    Walker, N. R.; Walters, R. S.; Pillai, E. D.; Duncan, M. A. Infrared Spectroscopy of V+(H2O) and V+(D2O) Complexes: Solvent Deformation and an Incipient Reaction. J. Chem. Phys. 2003, 119(20), 10471–10474.CrossRefGoogle Scholar
  26. 26.
    O’Brien, J. T.; Williams, E. R. Hydration of Gaseous Copper Dications Probed by IR Action Spectroscopy. J. Phys. Chem. A 2008, 112(26), 5893–5901.CrossRefGoogle Scholar
  27. 27.
    Sasaki, J.; Ohashi, K.; Inoue, K.; Imamura, T.; Judai, K.; Nishi, N.; Sekiya, H. Infrared photodissociation spectroscopy of V+(H2O)n (n = 2–8): Coordinative saturation of V+ with four H2O molecules. Chem. Phys. Lett. 2009, 474(1–3), 36–40.CrossRefGoogle Scholar
  28. 28.
    Iino, T.; Ohashi, K.; Mune, Y.; Inokuchi, Y.; Judai, K.; Nishi, N.; Sekiya, H. Infrared Photodissociation Spectra and Solvation Structures of Cu+H2On (n = 1–4). Chem. Phys. Lett. 2006, 427(1–3), 24–28.CrossRefGoogle Scholar
  29. 29.
    Iino, T.; Ohashi, K.; Inoue, K.; Judai, K.; Nishi, N.; Sekiya, H. Infrared Spectroscopy of Cu+H2On and Ag+H2On: Coordination and Solvation of Noble Metal Ions. J. Chem. Phys. 2007, 126(19), 1–11, 194302.CrossRefGoogle Scholar
  30. 30.
    Iino, T.; Ohashi, K.; Inoue, K.; Judai, K.; Nishi, N.; Sekiya, H. Coordination and Solvation of Noble Metal Ions: Infrared Spectroscopy of Ag+H2On. Eur. Phys. J. D: At. Mol. Opt. Plasma Phys. 2007, 43(1), 37–40.CrossRefGoogle Scholar
  31. 31.
    Oomens, J.; Sartakov, B. G.; Meijer, G.; Von Helden, G. Gas-Phase Infrared Multiple Photon Dissociation Spectroscopy of Mass-Selected Molecular Ions. Int. J. Mass Spectrom. 2006, 254(1–2), 1–19.CrossRefGoogle Scholar
  32. 32.
    MacAleese, L.; Maître, P. Infrared Spectroscopy of Organometallic Ions in the Gas Phase: From Model to Real World Complexes. Mass Spectrom. Rev. 2007, 26(4), 583–605.CrossRefGoogle Scholar
  33. 33.
    Jaeger, T. D.; van Heijnsbergen, D.; Klippenstein, S. J.; von Helden, G.; Meijer, G.; Duncan, M. A. Vibrational Spectroscopy and Density Functional Theory of Transition-Metal Ion-Benzene and Dibenzene Complexes in the Gas Phase. J. Am. Chem. Soc. 2004, 126(35), 10981–10991.CrossRefGoogle Scholar
  34. 34.
    van Heijnsbergen, D.; von Helden, G.; Meijer, G.; Maître, P.; Duncan, M. A. Infrared Spectra of Gas-Phase V+(Benzene) and V+(Benzene)2 Complexes. J. Am. Chem. Soc. 2002, 124(8), 1562–1563.CrossRefGoogle Scholar
  35. 35.
    Polfer, N. C.; Oomens, J.; Moore, D. T.; von Helden, G.; Meijer, G.; Dunbar, R. C. Infrared Spectroscopy of Phenylalanine Ag(I) and Zn(II) Complexes in the Gas Phase. J. Am. Chem. Soc. 2006, 128(2), 517–525.CrossRefGoogle Scholar
  36. 36.
    Polfer, N. C.; Oomens, J.; Dunbar, R. C. IRMPD Spectroscopy of Metal-Ion/Tryptophan Complexes. Phys. Chem., Chem. Phys. 2006, 8(23), 2744–2751.CrossRefGoogle Scholar
  37. 37.
    Dunbar, R. C.; Moore, D. T.; Oomens, J. IR-Spectroscopic Characterization of Acetophenone Complexes with Fe+, Co+, and Ni+ Using Free-Electron-Laser IRMPD. J. Phys. Chem. A 2006, 110(27), 8316–8326.CrossRefGoogle Scholar
  38. 38.
    Moore, D. T.; Oomens, J.; Eyler, J. R.; von Helden, G.; Meijer, G.; Dunbar, R. C. Infrared Spectroscopy of Gas-Phase Cr+ Coordination Complexes: Determination of Binding Sites and Electronic States. J. Am. Chem. Soc. 2005, 127(19), 7243–7254.CrossRefGoogle Scholar
  39. 39.
    Jagoda-Cwiklik, B.; Jungwirth, P.; Rulisek, L.; Milko, P.; Roithova, J.; Lemaire, J.; Maître, P.; Ortega, J. M.; Schroeder, D. Micro-Hydration of the MgNO3+ Cation in the Gas Phase. Chem. Phys. Chem 2007, 8(11), 1629–1639.Google Scholar
  40. 40.
    Mac Aleese, L.; Simon, A.; McMahon, T. B.; Ortega, J. M.; Scuderi, D.; Lemaire, J.; Maître, P. Mid-IR Spectroscopy of Protonated Leucine Methyl Ester Performed with an FTICR or a Paul Type Ion Trap. Int. J. Mass Spectrom. 2006, 249, 14–20.CrossRefGoogle Scholar
  41. 41.
    Bakker, J. M.; Besson, T.; Lemaire, J.; Scuderi, D.; Maître, P. Gas-Phase Structure of a π-Allyl-Palladium Complex: Efficient Infrared Spectroscopy in a 7 T Fourier Transform Mass Spectrometer. J. Phys. Chem. A 2007, 111(51), 13415–13424.CrossRefGoogle Scholar
  42. 42.
    Bakker, J. M.; Sinha, R. K.; Besson, T.; Brugnara, M.; Tosi, P.; Salpin, J. Y.; Maître, P. Tautomerism of Uracil Probed Via Infrared Spectroscopy of Singly Hydrated Protonated Uracil. J. Phys. Chem. A 2008, 112(48), 12393–12400.CrossRefGoogle Scholar
  43. 43.
    Bakker, J. M.; Salpin, J.-Y.; Maître, P. Tautomerism of Cytosine Probed by Gas Phase IR Spectroscopy. Int. J. Mass Spectrom. 2009, 283(1–3), 214–221.CrossRefGoogle Scholar
  44. 44.
    Yeh, L. I.; Okumura, M.; Myers, J. D.; Price, J. M.; Lee, Y. T. Vibrational Spectroscopy of the Hydrated Hydronium Cluster Ions H3O+(H2O)n (n = 1, 2, 3). J. Chem. Phys. 1989, 91(12), 7319–7330.CrossRefGoogle Scholar
  45. 45.
    Peiris, D. M.; Cheeseman, M. A.; Ramanathan, R.; Eyler, J. R. Infrared Multiple-Photon Dissociation Spectra of Gaseous Ions. J. Phys. Chem. 1993, 97(30), 7839–7843.CrossRefGoogle Scholar
  46. 46.
    Rotzinger, F. P. Performance of Molecular Orbital Methods and Density Functional Theory in the Computation of Geometries and Energies of Metal Aqua Ions. J. Phys. Chem. B 2005, 109(4), 1510–1527.CrossRefGoogle Scholar
  47. 47.
    Duncombe, B. J.; Ryden, J. O. S.; Puskar, L.; Cox, H.; Stace, A. J. A Gas-Phase Study of the Preferential Solvation of Mn2+ in Mixed Water/Methanol Clusters. J. Am. Soc. Mass Spectrom. 2008, 19(4), 520–530.CrossRefGoogle Scholar
  48. 48.
    Cox, H.; Akibo-Betts, G.; Wright, R. R.; Walker, N. R.; Curtis, S.; Duncombe, B.; Stace, A. J. Solvent Coordination in Gas-Phase [Mn(H2O)n]2+ and [Mn(ROH)n]2+ Complexes: Theory and Experiment. J. Am. Chem. Soc. 2003, 125(1), 233–242.CrossRefGoogle Scholar
  49. 49.
    Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian Program Suite; Gaussian, Inc.: Wallingford, CT, 2004.Google Scholar
  50. 50.
    Herzberg, G. Molecular Spectra and Molecular Structure II: Infrared and Raman Spectra of Polyatomic Molecules, Vol. II; Van Nostrand Reinhold: New York, 1945.Google Scholar
  51. 51.
    Walker, N. R.; Grieves, G. A.; Jaeger, J. B.; Walters, R. S.; Duncan, M. A. Generation of “Unstable” Doubly Charged Metal Ion Complexes in a Laser Vaporization Cluster Source. Int. J. Mass Spectrom. 2003, 228(2–3), 285–295.CrossRefGoogle Scholar
  52. 52.
    Tevault, D. E.; Chi, F. K.; Andrews, L. Infrared Spectrum and Vibrational Potential Function of Chlorite Anion in Matrix-Isolated M+ClO2 species. J. Mol. Spectrosc. 1974, 51(3), 450–457.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2010

Authors and Affiliations

  • Rajeev K. Sinha
    • 1
  • Edith Nicol
    • 1
  • Vincent Steinmetz
    • 1
  • Philippe Maître
    • 1
  1. 1.Laboratoire de Chimie PhysiqueUniversité Paris-Sud 11 UMR8000 CNRS, Faculté des sciencesOrsay cedexFrance

Personalised recommendations