Influence of amino acid side chains on apparent selective opening of cyclic b5 ions

  • Samuel Molesworth
  • Sandra Osburn
  • Michael Van Stipdonk
Article

Abstract

In this study, the possible influence of acidic, basic, and amide side chains on the opening of a putative macrocyclic b ion (b5+) intermediate was investigated. Collision induced dissociation (CID) of b5 ions was studied using a group of hexapeptides in which amino acids with the side chains of interest occupied internal sequence positions. Further experiments were performed with permuted isomers of glutamine (Q) containing peptides to probe for sequence scrambling and whether the specific sequence site of the residues influences opening of the macrocycle. Overall, the trend for (apparent) preferential/selective opening of the cyclic b5+, presumably due to the side chain, followed by the loss of the amino acid with active side group is: Q > K > D > N ∼ E.

Supplementary material

13361_2011_210601028_MOESM1_ESM.doc (130 kb)
Supplementary material, approximately 133 KB.

References

  1. 1.
    Hunt, D. F.; Yates, J. R. III; Shabanonowitz J.; Winston, S.; Hauer, C. R. Protein Sequencing by Tandem Mass Spectrometry. Proc. Natl. Acad. Sci. 1986, 83, 6233–6237.CrossRefGoogle Scholar
  2. 2.
    Biemann, K. Contributions of Mass Spectrometry to Peptide and Protein Structure. Biomed. Environ. Mass Spectrom. 1988, 16, 99–111.CrossRefGoogle Scholar
  3. 3.
    Steen, H.; Mann, M. The abc’s and the xyz’s of Peptide Sequencing. Nat. Rev. Mol. Cell. Biol. 2004, 5, 699–711.CrossRefGoogle Scholar
  4. 4.
    Nesvizhskii, A. E.; Vitek, O.; Aebersold, R. Analysis and Validation of Proteomic Data Generated by Tandem Mass Spectrometry. Nat. Methods 2007, 4, 787–797.CrossRefGoogle Scholar
  5. 5.
    Roepstroff, P.; Fohlmann, J. Proposal for a Common Nomenclature for Sequence Ions in Mass Spectra of Peptides. J. Biomed. Mass Spectrom. 1984, 11, 601.CrossRefGoogle Scholar
  6. 6.
    Papayannopoulos, I. A. The Interpretation of Collision-Induced Dissociation Tandem Mass Spectra of Peptides. 1995, 14, 49–73.Google Scholar
  7. 7.
    Dongre, A. R.; Jones, J. L.; Somogyi, A.; Wysocki, V. H. Influence of Peptide Composition, Gas-Phase Basicity, and Chemical Modification on Fragmentation Efficiency: Evidence for the Mobile Proton Model. J. Am. Chem. Soc. 1996, 118, 8365–8374.CrossRefGoogle Scholar
  8. 8.
    Wysocki, V. H.; Tsaprailis, G.; Smith, L. L.; Breci, L. A. Mobile and Localized Protons: A Framework for Understanding Peptide Dissociation. J. Mass Spectrom. 2000, 35, 1399–1406.CrossRefGoogle Scholar
  9. 9.
    Yalcin, T.; Csizmadia, I. G.; Peterson, M. B.; Harrison, A. Why are b Ions Stable Species in Peptide Spectra? J. Am. Soc. Mass Spectrom. 1996, 7, 233–242.CrossRefGoogle Scholar
  10. 10.
    Paizs, B.; Lendvay, G.; Vekey, K.; Suhai, S. Formation of b + 2 Ions from Protonated Peptides: An Ab Initio Study. Rapid Commun. Mass Spectrom. 1999, 13, 525–533.CrossRefGoogle Scholar
  11. 11.
    Paizs, B.; Suhai, S. Towards Understanding the Tandem Mass Spectra of Protonated Oligopeptides. 1: Mechanism of Amide Bond Cleavage. J. Am. Soc. Mass Spectrom. 2004, 15, 103–113.CrossRefGoogle Scholar
  12. 12.
    Paizs, B.; Suhai, S. Combined Quantum Chemical and RRKM Modeling of the Main Fragmentation Pathways of Protonated GGG. II. Formation of b2, y1, and y2 ions. Rapid Commun. Mass Spectrom. 2002, 16, 375–389.CrossRefGoogle Scholar
  13. 13.
    Polce, M. J.; Ren, D.; Wesdemiotis, C. Dissociation of the Peptide Bond in Protonated Peptides. J. Mass Spectrom. 2000, 35(12), 1391–1398.CrossRefGoogle Scholar
  14. 14.
    Paizs, B.; Suhai, S. Fragmentation Pathways of Protonated Peptides. Mass Spectrom. Rev. 2004, 24, 508–548.CrossRefGoogle Scholar
  15. 15.
    Yalcin, T.; Khouw, C.; Csizmadia, I. G.; Peterson, M. R.; Harrison, A. G. The Structure and Fragmentation of b n (n < 3) Ions in Peptide Spectra. J. Am. Soc. Mass Spectrom. 1995, 6, 1165–1174.CrossRefGoogle Scholar
  16. 16.
    Harrison, A. G.; Young, A. B.; Bleiholder, B.; Suhai, S.; Paizs, B. Scrambling of Sequence Information in Collision-Induced Dissociation of Peptides. J. Am. Chem. Soc. 2006, 128, 10364–10365.CrossRefGoogle Scholar
  17. 17.
    Riba-Garcia, F.; Giles, K.; Bateman, R. H.; Gaskell, S. J. Evidence for Structural Variants of a-and b-Type Peptide Fragment Ions Using Combined Ion Mobility/Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2008, 19, 609–613.CrossRefGoogle Scholar
  18. 18.
    Bleiholder, C.; Osburn, S.; Williams, T. D.; Suhai, S.; Van Stipdonk, M.; Harrison, A. G.; Paizs, B. Sequence Scrambling Fragmentation Pathways of Protonated Peptides. J. Am. Chem. Soc. 2008, 130, 17774–17789.CrossRefGoogle Scholar
  19. 19.
    Jia, C.; Qi, W.; He, Z. Cyclization Reaction of Peptide Fragment Ions during Multistage Collisionally Activated Decomposition: An Inducement to Lose Internal Amino-Acid Residues. J. Am. Soc. Mass Spectrom. 2007, 18, 663–667.CrossRefGoogle Scholar
  20. 20.
    Farrugia, J. M.; O’Hair, R. A. J.; Reid, G. E.; Do All b2 Ions Have Oxazolone Structures? Multistage Mass Spectrometry and Ab Initio Studies on Protonated N-Acyl Amino Acid Methyl Ester Model Systems. Int. J. Mass Spectrom. 2001, 210/211, 71–87.CrossRefGoogle Scholar
  21. 21.
    Yalcin, T.; Harrison, A. G. Ion Chemistry of Protonated Lysine Derivatives. J. Mass Spectrom. 1996, 31, 1237–1243.CrossRefGoogle Scholar
  22. 22.
    Kish, M. M.; Wesdemiotis, C. Selective Cleavage at Internal Lysine Residues in Protonated Versus Metalated Peptides. Int. J. Mass Spectrom. 2003, 227, 191–203.CrossRefGoogle Scholar
  23. 23.
    Farrugia, J. M.; O’Hair, R. A. J. Involvement of Salt Bridges in a Novel Gas Phase Rearrangement of Protonated Arginine-Containing Dipeptides That Precedes Fragmentation. Int. J. Mass Spectrom. 2003, 222, 229–242.CrossRefGoogle Scholar
  24. 24.
    Paizs, B.; Suhai, S.; Hargittai, B.; Hruby, V. J.; Somogyi, Á. Ab Initio and MS/MS Studies on Protonated Peptides Containing Basic and Acidic Amino Acid Residues: I. Solvated proton Versus Salt-Bridged Structures and the Cleavage of the Terminal Amide Bond of Protonated RD-NH2. Int. J. Mass Spectrom. 2002, 219, 203–232.CrossRefGoogle Scholar
  25. 25.
    Jonsson, A. P.; Bergman, T.; Jörnvall, H.; Griffiths, W. J.; Bratt, P.; Strömberg, N. Gln-Gly Cleavage: Correlation Between CollisionInduced Dissociation and Biological Degradation. J. Am. Soc. Mass Spectrom. 2001, 12, 337–342.CrossRefGoogle Scholar
  26. 26.
    Lee, Y. J.; Lee, Y. M. Formation of c1 Fragment Ions in Collision-Induced Dissociation of Glutamine-Containing Peptide Ions: A Tip for De Novo Sequencing. Rapid Commun. Mass Spectrom. 2004, 18, 2069–2076.CrossRefGoogle Scholar
  27. 27.
    Harrison, A. G. Fragmentation Reactions of Protonated Peptides Containing Glutamine or Glutamic Acid. JMS 2003, 38, 174–187.Google Scholar
  28. 28.
    Baldwin, M. A.; Falick, A. M.; Gibson, B. W.; Prusiner, S. B.; Stahl, N.; Burlingame, A. L. Tandem Mass Spectrometry of Peptides with N-Terminal Glutamine: Studies on a Prion Protein Peptide. J. Am. Soc. Mass Spectrom. 1990, 1, 258–264.CrossRefGoogle Scholar
  29. 29.
    Rozman, M. Aspartic Acid Side Chain Effect—Experimental and Theoretical Insight. J. Am. Soc. Mass Spectrom. 2007, 18, 121–127.CrossRefGoogle Scholar
  30. 30.
    Gu, C.; Tsaprailis, G.; Breci, L.; Wysocki, V. H. Selective Gas-Phase Cleavage at the Peptide Bond C-Terminal to Aspartic Acid in Fixed-Charge Derivatives of Asp-Containing Peptides. Anal. Chem. 2000, 72, 5904–5813.CrossRefGoogle Scholar
  31. 31.
    Tsaprailis, G.; Somogyi, Á.; Nikolaev, E. N.; Wysocki, V. H. Refining the Model for Selective Cleavage at Acidic Residues in Arginine-Containing Protonated Peptides. Int. J. Mass Spectrom. 2000, 195/196, 467–479.CrossRefGoogle Scholar
  32. 32.
    Herrmann, K. A.; Wysocki, V. H.; Vorpagel, E. R. Computational Investigation and Hydrogen/Deuterium Exchange of the Fixed Charge Derivative Tris(2,4,6-Trimethoxyphenyl) Phosphonium: Implications for the Aspartic Acid Cleavage Mechanism. J. Am. Soc. Mass Spectrom. 2005, 16, 1067–1080.CrossRefGoogle Scholar
  33. 33.
    Lee, S.; Kim, H. S.; Beauchamp, J. L. Salt Bridge Chemistry Applied to Gas-Phase Peptide Sequencing: Selective Fragmentation of Sodiated Gas-Phase Peptide Ions Adjacent to Aspartic Acid Residues. J. Am. Chem. Soc. 1998, 120, 3188–3195.CrossRefGoogle Scholar
  34. 34.
    Gonzalez, L. J.; Shimizu, T.; Satomi, Y.; Betancourt, L.; Besada1, V.; Padron, G.; Orlando, R.; Shirasawa, T.; Shimonishi, Y.; Takao, T. Differentiating α- and β-Aspartic Acids by Electrospray Ionization and Low-Energy Tandem Mass Spectrometry. Rapid Commun. Mass Spectrom. 2000, 14, 2092–2102.CrossRefGoogle Scholar
  35. 35.
    Yu, W.; Vath, J. E.; Huberty, M. C.; Martin, S. A. Identification of the Facile Gas-Phase Cleavage of the Asp-Pro and Asp-Xxx Peptide Bonds in Matrix-Assisted Laser Desorption Time-of-Flight. Mass Spectrom. Anal. Chem. 1993, 65, 3015–3023.Google Scholar
  36. 36.
    Price, W. D.; Schnier, P. D.; Jockusch, R. A.; Strittmatter, E. F.; Williams, E. R. Unimolecular Reaction Kinetics in the High-Pressure Limit without Collisions. J. Am. Chem. Soc. 1996, 118, 10640–10644.CrossRefGoogle Scholar
  37. 37.
    Sun, W.; Kinsel, G. R.; Marynick, D. S. Computational Estimates of the Gas-Phase Basicity and Proton Affinity of Glutamic Acid. J. Phys. Chem. A 1999, 103, 4113–4117.CrossRefGoogle Scholar
  38. 38.
    Chan, W. C.; White, P. D. Fmoc Solid Phase Peptide Synthesis—a Practical Approach; Oxford University Press: New York, 2000.Google Scholar
  39. 39.
    Molesworth, S.; Osburn, S.; Van Stipdonk, M. Influence of Size on Apparent Scrambling of Sequence During CID of b-Type Ions. J. Am. Soc. Mass Spectrom. 2009, 20, 2174–2184.CrossRefGoogle Scholar
  40. 40.
    Molesworth, S.; Leavitt, C. M.; Groenewold, G. S.; Oomens, J.; Steill, J.; Van Stipdonk, M. Spectroscopic Evidence for Mobilization of Amide Position Protons During CID of Model Peptide Ions. J. Am. Soc. Mass Spectrom. 2009, 20, 1841–1845.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2010

Authors and Affiliations

  • Samuel Molesworth
    • 1
  • Sandra Osburn
    • 1
    • 2
  • Michael Van Stipdonk
    • 1
  1. 1.Department of ChemistryWichita State UniversityWichitaUSA
  2. 2.Department of Chemistry and BiochemistryNorthern Illinois UniversityDeKalbUSA

Personalised recommendations