High resolution PTR-TOF: Quantification and formula confirmation of VOC in real time

Article

Abstract

We present the unprecedented capability to identify and quantify volatile organic compounds (VOCs) by means of proton transfer reaction time-of-flight (PTR-TOF) mass spectrometry on-line with high time resolution. A mass resolving power of 4000–5000 and a mass accuracy of 2.5 ppm allow for the unambiguous sum-formula identification of hydrocarbons (HCs) and oxygenated VOCs (OVOCs). Test masses measured over an 11-wk period are very precise (SD < 3.4 ppm) and the mass resolving power shows good stability (SD < 5%). Based on a 1 min time resolution, we demonstrate a detection limit in the low pptv range featuring a dynamic range of six orders of magnitude. Sub-ppbv VOC concentrations are analyzed within a second; sub-pptv detection limits are achieved within a few tens of minutes. We present a thorough characterization of our recently developed PTR-TOF system and address application fields for the new instrument.

Supplementary material

13361_2011_210601037_MOESM1_ESM.ppt (183 kb)
Supplementary material, approximately 188 KB.
13361_2011_210601037_MOESM2_ESM.ppt (109 kb)
Supplementary material, approximately 111 KB.
13361_2011_210601037_MOESM3_ESM.doc (44 kb)
Supplementary material, approximately 45 KB.
13361_2011_210601037_MOESM4_ESM.ppt (108 kb)
Supplementary material, approximately 110 KB.

References

  1. 1.
    Hansel, A.; Jordan, A.; Holzinger, R.; Prazeller, P.; Vogel, W.; Lindinger, W. Proton Transfer Reaction Mass Spectrometry: On-Line Trace Gas Analysis at the ppb Level. Int. J. Mass Spectrom. Ion Processes 1995, 149/150, 609–619.CrossRefGoogle Scholar
  2. 2.
    Lindinger, W.; Hansel, A.; Jordan, A. Proton-Transfer-Reaction Mass Spectrometry (PTR-MS): On-Line Monitoring of Volatile Organic Compounds at pptv Levels. Chem. Soc. Rev. 1998, 27, 347–375.CrossRefGoogle Scholar
  3. 3.
    De Gouw, J. A.; Warneke, C. Measurements of Volatile Organic Compounds in the Earth’s Atmosphere Using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrom. Rev. 2007, 26, 223–257.CrossRefGoogle Scholar
  4. 4.
    Fall, R.; Karl, T.; Jordan, A.; Lindinger, W. Biogenic C5 VOCs: Release from Leaves after Freeze-Thaw Wounding and Occurrence in Air at a High Mountain Observatory. Atmos. Environ. 2001, 35, 3905–3916.CrossRefGoogle Scholar
  5. 5.
    Karl, T.; Guenther, A.; Lindinger, C.; Jordan, A.; Fall, R.; Lindinger, W. Eddy Covariance Measurements of Oxygenated Volatile Organic Compound Fluxes from Crop Harvesting Using a Redesigned Proton-Transfer-Reaction Mass Spectrometer. J. Geophys. Res. 2001, 106, 24157–24169.CrossRefGoogle Scholar
  6. 6.
    Warneke, C.; De Gouw, J.; Kuster, W.; Goldan, P.; Fall, R. Validation of Atmospheric VOC Measurements by Proton-Transfer-Reaction Mass Spectrometry Using a Gas-Chromatographic Preseparation Method. Environ. Sci. Technol. 2003, 37, 2494–2501.CrossRefGoogle Scholar
  7. 7.
    Prazeller, P.; Palmer, P. T.; Boscaini, E.; Jobson, T.; Alexander, M. Proton Transfer Reaction Ion Trap Mass Spectrometer. Rapid Commun. Mass Spectrom. 2003, 17, 1593–1599.CrossRefGoogle Scholar
  8. 8.
    Steehgs, M.; Sikkens, C.; Crespo, E.; Cristescu, S. M.; Harren, F. J. M. Development of a Proton-Transfer Reaction Ion Trap Mass Spectrometer: Online Detection and Analysis of Volatile Organic Compounds. Int. J. Mass Spectrom. 2007, 262, 16–24.CrossRefGoogle Scholar
  9. 9.
    Warneke, C.; de Gouw, J. A.; Lovejoy, E. R.; Murphy, P. C.; Kuster, W. C.; Fall, R. Development of Proton-Transfer Ion Trap-Mass Spectrometry: On-line Detection and Identification of Volatile Organic Compounds in Air. J. Am. Soc. Mass Spectrom. 2005, 16, 1316–1324.CrossRefGoogle Scholar
  10. 10.
    Mielke, L. H.; Erickson, D. E.; McLuckey, S. A.; Müller, M.; Wisthaler, A.; Hansel, A.; Shepson, P. B. Development of a Proton-Transfer Reaction-Linear Ion Trap Mass Spectrometer for Quantitative Determination of Volatile Organic Compounds. Anal. Chem. 2008, 80, 8171–8177.CrossRefGoogle Scholar
  11. 11.
    Müller, M.; Mielke, L. H.; Breitenlechner, M.; McLuckey, S. A.; Shepson, P. B.; Wisthaler, A.; Hansel, A. MS/MS Studies for the Selective Detection of Isomeric Biogenic VOCs Using a Townsend Discharge Triple Quadrupole Tandem MS and a PTR-Linear Ion Trap MS. Atmos. Measurement Techniques Discuss. 2009, 2, 1837–1861.CrossRefGoogle Scholar
  12. 12.
    Blake, R. S.; Whyte, C.; Hughes, C. O.; Ellis, A. M.; Monks, P. S. Demonstration of Proton-Transfer Reaction Time-of-Flight Mass Spectrometry for Real-Time Analysis of Trace Volatile Organic Compounds. Anal. Chem. 2004, 76, 3841–3845.CrossRefGoogle Scholar
  13. 13.
    Ennis, C. J.; Reynolds, J. C.; Keely, B. J.; Carpenter, L. J. A Hollow Cathode Proton Transfer Reaction Time of Flight Mass Spectrometer. Int. J. Mass Spectrom. 2005, 247, 72–80.CrossRefGoogle Scholar
  14. 14.
    Tanimoto, H.; Aoki, N.; Inomata, S.; Hirokawa, J.; Sadanaga, Y. Development of a PTR-TOFMS Instrument for Real-Time Measurements of Volatile Organic Compounds in Air. Int. J. Mass Spectrom. 2007, 263, 1–11.CrossRefGoogle Scholar
  15. 15.
    Wyche, K.; Blake, R.; Ellis, A.; Monks, P.; Brauers, T.; Koppmann, R.; Apel, E. Technical Note: Performance of Chemical Ionization Reaction Time-of-Flight Mass Spectrometry (CIR-TOF-MS) for the Measurement of Atmospherically Significant Oxygenated Volatile Organic Compounds. Atmos. Chem. Phys. 2007, 7, 609–620.CrossRefGoogle Scholar
  16. 16.
    Blake, R. S.; Monks, P. S.; Ellis, A. M. Proton-Transfer Reaction Mass Spectrometry. Chem. Rev. 2009, 109, 861–896.CrossRefGoogle Scholar
  17. 17.
    Jordan, A.; Haidacher, S.; Hanel, G.; von Hartungen, E.; Märk, L.; Seehauser, H.; Schottkowsky, R.; Sulzer, P.; Märk, T. D. A High Resolution and High Sensitivity Proton-Transfer-Reaction Time-of-Flight Mass Spectrometer (PTR-TOF-MS). Int. J. Mass Spectrom. 2009, 286, 122–128.CrossRefGoogle Scholar
  18. 18.
    Christiansen, J.; Marchioro, A.; Moreira, F.; Mota, M.; Ryjov, V.; Debieux, S. A. Data Driven High Performance Time to Digital Converter. Proceedings of the 6th Workshop on Electronics for LHC Experiments; Krakow, Poland, 2000; lebwshop.home.cern.ch/lebwshop/LEB00_Book/tracker/christiansen_track.pdf.Google Scholar
  19. 19.
    Müller, M.; Graus, M.; Ruuskanen, T. M.; Schnitzhofer, R.; Bamberger, I.; Kaser, L.; Titzmann, T.; Hörtnagl, L.; Wohlfahrt, G.; Karl, T.; Hansel, A. First Eddy Covariance Flux Measurements by PTR-TOF. Atmos. Measurement Techniques Discuss. 2009, 2, 3265–3290.CrossRefGoogle Scholar
  20. 20.
    Sack, T. M.; Lapp, R. L.; Gross, M. L.; Kimble, B. J. A Method for the Statistical Evaluation of Accurate Mass Measurement Quality. Int. J. Mass Spectrom. Ion Processes 1984, 61, 191–210.CrossRefGoogle Scholar
  21. 21.
    DeCarlo, P. F.; Kimmel, J. R.; Trimborn, A.; Northway, M. J.; Jayne, J. T.; Aiken, A. C.; Gonin, M.; Fuhrer, K.; Horvath, T.; Docherty, K. S.; Worsnop, D. R.; Jimenez, J. L. Field-Deployable, High-Resolution, Time-of-Flight Aerosol Mass Spectrometer. Anal. Chem. 2006, 78, 8281–8289.CrossRefGoogle Scholar
  22. 22.
    Coles, J. N.; Guilhaus, M. Resolution Limitations from Detector Pulse Width and Jitter in a Linear Orthogonal-Acceleration Time-of-Flight Mass Spectrometer. J. Am. Soc. Mass Spectrom. 1994, 5, 772–778.CrossRefGoogle Scholar
  23. 23.
    Su, T.; Chesnavich, W. J. Parameterization of the Ion-Polar Molecule Collision Rate-Constant by Trajectory Calculations. J. Chem. Phys. 1982, 76, 5183–5185.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2010

Authors and Affiliations

  1. 1.Institute of Ion Physics and Applied PhysicsUniversity of InnsbruckInnsbruckAustria
  2. 2.Ionicon AnalytikInnsbruckAustria
  3. 3.Chemical Sciences DivisionNOAA Earth System Research, LaboratoryBoulderUSA

Personalised recommendations