Micro-heterogeneity of human saliva peptide P-C characterized by high-resolution top-down fourier-transform mass spectrometry

  • Frédéric Halgand
  • Vlad Zabrouskov
  • Sara Bassilian
  • Puneet Souda
  • David T. Wong
  • Joseph A. Loo
  • Kym F. Faull
  • Julian P. Whitelegge


Top-down proteomics characterizes protein primary structures with unprejudiced descriptions of expressed and processed gene products. Gene sequence polymorphisms, protein post-translational modifications, and gene sequence errors can all be identified using top-down proteomics. Saliva offers advantages for proteomic research because of availability and the noninvasiveness of collection and, for these reasons, is being used to search for disease biomarkers. The description of natural protein variants, and intra- and inter-individual polymorphisms, is necessary for a complete description of any proteome, and essential for the discovery of disease biomarkers. Here, we report a striking example of natural protein variants with the discovery by top-down proteomics of two new variants of Peptide P-C. Intact mass measurements, and collisionally activated-, infrared multiphoton-, and electron capture-dissociation, were used for characterization of the form predicted from the gene sequence with an average mass 4371 Da, a form postulated to result from a single nucleotide polymorphism of mass 4372 Da, and another form of mass 4370 Da postulated to arise from a novel protein sequence polymorphism. While the biological significance of such subtle variations in protein structure remains unclear, their importance cannot be assigned without their characterization, as is reported here for one of the major salivary proteins.

Supplementary material

13361_2011_210500868_MOESM1_ESM.doc (254 kb)
Supplementary material, approximately 260 KB.


  1. 1.
    Teixeira, E. H.; Napimoga, M. H.; Carneiro, V. A.; de Oliveira, T. M.; Cunha, R. M.; Havt, A.; Martins, J. L.; Pinto, V. P.; Goncalves, R. B.; Cavada, B. S. In Vitro Inhibition of Streptococci Binding to Enamel Acquired Pellicle by Plant Lectins. J. Appl. Microbiol. 2006, 101, 111–116.CrossRefGoogle Scholar
  2. 2.
    Hardt, M.; Thomas, L. R.; Dixon, S. E.; Newport, G.; Agabian, N.; Prakobphol, A.; Hall, S. C.; Witkowska, H. E.; Fisher, S. J. Toward Defining the Human Parotid Gland Salivary Proteome and Peptidome: Identification and Characterization Using 2D SDS-PAGE, Ultrafiltration, HPLC, and Mass Spectrometry. Biochemistry 2005, 44, 2885–2899.CrossRefGoogle Scholar
  3. 3.
    Messana, I.; Cabras, T.; Inzitari, R.; Lupi, A.; Zuppi, C.; Olmi, C.; Fadda, M. B.; Cordaro, M.; Giardina, B.; Castagnola, M. Characterization of the Human Salivary Basic Proline-Rich Protein Complex by a Proteomic Approach. J. Proteome Res. 2004, 3, 792–800.CrossRefGoogle Scholar
  4. 4.
    Gomez, S. M.; Nishio, J. N.; Faull, K. F.; Whitelegge, J. P. The Chloroplast Grana Proteome Defined by Intact Mass Measurements from Liquid Chromatography Mass Spectrometry. Mol. Cell. Proteom. 2002, 1, 46–59.CrossRefGoogle Scholar
  5. 5.
    Forbes, A. J.; Patrie, S. M.; Taylor, G. K.; Kim, Y. B.; Jiang, L.; Kelleher, N. L. Targeted Analysis and Discovery of Post-Translational Modifications in Proteins from Methanogenic Archaea by Top-Down MS. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 2678–2683.CrossRefGoogle Scholar
  6. 6.
    Wu, S.; Lourette, N. M.; Tolic, N.; Zhao, R.; Robinson, E. W.; Tolmachev, A. V.; Smith, R. D.; Pasa-Tolic, L. An Integrated Top-Down and Bottom-Up Strategy for Broadly Characterizing Protein Isoforms and Modifications. J. Proteome Res. 2009, 8, 1347–1357.CrossRefGoogle Scholar
  7. 7.
    Messana, I.; Loffredo, F.; Inzitari, R.; Cabras, T.; Giardina, B.; Onnis, G.; Piludu, M.; Castagnola, M. The Coupling of RP-HPLC and ESI-MS in the Study of Small Peptides and Proteins Secreted In Vitro by Human Salivary Glands that are Soluble in Acidic Solution. Eur. J. Morphol. 2003, 41, 103–106.CrossRefGoogle Scholar
  8. 8.
    Whitelegge, J. P.; Zabrouskov, V.; Halgand, F.; Souda, P.; Bassilian, S.; Yan, W.; Wolinsky, L.; Loo, J. A.; Wong, D. T.; Faull, K. F. Protein-Sequence Polymorphisms and Post-translational Modifications in Proteins from Human Saliva using Top-Down Fourier-transform Ion Cyclotron Resonance Mass Spectrometry. Int. J. Mass Spectrom. 2007, 268, 190–197.CrossRefGoogle Scholar
  9. 9.
    Castagnola, M.; Congiu, D.; Denotti, G.; Di Nunzio, A.; Fadda, M. B.; Melis, S.; Messana, I.; Misiti, F.; Murtas, R.; Olianas, A.; Piras, V.; Pittau, A.; Puddu, G. Determination of the Human Salivary Peptides Histatins 1, 3, 5 and Statherin by High-Performance Liquid Chromatography and by Diode-Array Detection. J. Chromatogr. B Biomed. Sci. Appl. 2001, 751, 153–160.CrossRefGoogle Scholar
  10. 10.
    Castagnola, M.; Inzitari, R.; Rossetti, D. V.; Olmi, C.; Cabras, T.; Piras, V.; Nicolussi, P.; Sanna, M. T.; Pellegrini, M.; Giardina, B.; Messana, I. A Cascade of 24 Histatins (Histatin 3 Fragments) in Human Saliva: Suggestions for a Pre-Secretory Sequential Cleavage Pathway. J. Biol. Chem. 2004, 279, 41436–41443.CrossRefGoogle Scholar
  11. 11.
    Inzitari, R.; Cabras, T.; Onnis, G.; Olmi, C.; Mastinu, A.; Sanna, M. T.; Pellegrini, M. G.; Castagnola, M.; Messana, I. Different Isoforms and Post-Translational Modifications of Human Salivary Acidic Proline-Rich Proteins. Proteomics 2005, 5, 805–815.CrossRefGoogle Scholar
  12. 12.
    Inzitari, R.; Cabras, T.; Rossetti, D. V.; Fanali, C.; Vitali, A.; Pellegrini, M.; Paludetti, G.; Manni, A.; Giardina, B.; Messana, I.; Castagnola, M. Detection in Human Saliva of Different Statherin and P-B Fragments and Derivatives. Proteomics. 2006, 6, 6370–6379.CrossRefGoogle Scholar
  13. 13.
    Fanali, C.; Inzitari, R.; Cabras, T.; Fiorita, A.; Scarano, E.; Patamia, M.; Retruzzelli, R.; Bennick, A.; Messana, I.; Castagnola, M. Mass Spectrometry Strategies Applied to the Characterization of Proline-Rich Peptides from Secretory Parotid Granules of Pig (Sus scrofa). J. Sep. Sci. 2008, 31, 516–522.CrossRefGoogle Scholar
  14. 14.
    Messana, I.; Cabras, T.; Pisano, E.; Sanna, M. T.; Olianas, A.; Manconi, B.; Pellegrini, M.; Paludetti, G.; Scarano, E.; Fiorita, A.; Agostino, S.; Contucci, A. M.; Calo, L.; Picciotti, P. M.; Manni, A.; Bennick, A.; Vitali, A.; Fanali, C.; Inzitari, R.; Castagnola, M. Trafficking and Postsecretory Events Responsible for the Formation of Secreted Human Salivary Peptides: A Proteomics Approach. Mol. Cell. Proteom. 2008, 7, 911–926.CrossRefGoogle Scholar
  15. 15.
    Kimura, I.; Sasamoto, H.; Sasamura, T.; Sugihara, Y.; Ohgaku, S.; Kobayashi, M. Reduction of Incretin-Like Salivatin in Saliva from Patients with Type 2 Diabetes and in Parotid Glands of Streptozotocin-Diabetic BALB/c Mice. Diabetes Obes. Metab. 2001, 3, 254–258.CrossRefGoogle Scholar
  16. 16.
    Kimura, M.; Nakashima, N.; Kimura, I. Salivary Peptide P-C Modulates Both Insulin and Glucagon Release from Isolated Perfused Rat Pancreas. Jpn. J. Pharmacol. 1990, 52, 579–585.CrossRefGoogle Scholar
  17. 17.
    Wolff, A.; Begleiter, A.; Moskona, D. A Novel System of Human Submandibular/Sublingual Saliva Collection. J. Dent. Res. 1997, 76, 1782–1786.CrossRefGoogle Scholar
  18. 18.
    Whitelegge, J. P.; Zhang, H.; Aguilera, R.; Taylor, R. M.; Cramer, W. A. Full Subunit Coverage Liquid Chromatography Electrospray Ionization Mass Spectrometry (LCMS+) of an Oligomeric Membrane Protein: Cytochrome b(6)f Complex from Spinach and the Cyanobacterium Mastigocladus laminosus. Mol. Cell. Proteom. 2002, 1, 816–827.CrossRefGoogle Scholar
  19. 19.
    Whitelegge, J. P.; Gundersen, C. B.; Faull, K. F. Electrospray-Ionization Mass Spectrometry of Intact Intrinsic Membrane Proteins. Protein Sci. 1998, 7, 1423–1430.CrossRefGoogle Scholar
  20. 20.
    Roepstorff, P.; Fohlman, J. Proposal for a Common Nomenclature for Sequence Ions in Mass Spectra of Peptides. Biomed. Mass Spectrom. 1984, 11, 601.CrossRefGoogle Scholar
  21. 21.
    LeDuc, R. D.; Taylor, G. K.; Kim, Y. B.; Januszyk, T. E.; Bynum, L. H.; Sola, J. V.; Garavelli, J. S.; Kelleher, N. L. ProSight PTM: An Integrated Environment for Protein Identification and Characterization by Top-Down Mass Spectrometry. Nucleic Acids Res. 2004, 32, W340-W345.CrossRefGoogle Scholar
  22. 22.
    Azen, E. A. Genetic Protein Polymorphisms in Human Saliva: An Interpretive Review. Biochem. Genet. 1978, 16, 79–99.CrossRefGoogle Scholar
  23. 23.
    Azen, E. A. A Frequent Mutation in the Acidic Proline-Rich Protein Gene, PRH2, Causing a Q147K Change Closely Adjacent to the Bacterial Binding Domain of the Cognate Salivary PRP (Pr1′) in Afro-Americans: Mutations in Brief no. 154. Online. Hum. Mutat. 1998, 12, 72.CrossRefGoogle Scholar
  24. 24.
    Hay, D. I.; Bennick, A.; Schlesinger, D. H.; Minaguchi, K.; Madapallimattam, G.; Schluckebier, S. K. The Primary Structures of Six Human Salivary Acidic Proline-Rich Proteins (PRP-1, PRP-2, PRP-3, PRP-4, PIF-s, and PIF-f). Biochem. J. 1988, 255, 15–21.Google Scholar
  25. 25.
    Scotchler, J. W.; Robinson, A. B. Deamidation of Glutaminyl Residues: Dependence on pH, Temperature, and Ionic Strength. Anal. Biochem. 1974, 59, 319–322.CrossRefGoogle Scholar
  26. 26.
    Kelleher, N. L.; Lin, H. Y.; Valaskovic, G. A.; Aaserud, D. J.; Fridriksson, E. K.; McLafferty, F. W. Top-Down Versus Bottom-Up Protein Characterization by Tandem High-Resolution Mass Spectrometry. J. Am. Chem. Soc. 1999, 121, 806–807.CrossRefGoogle Scholar
  27. 27.
    Pesavento, J. J.; Kim, Y. B.; Taylor, G. K.; Kelleher, N. L. Shotgun Annotation of Histone Modifications: A New Approach for Streamlined Characterization of Proteins by Top Down Mass Spectrometry. J. Am. Chem. Soc. 2004, 126, 3386–3387.CrossRefGoogle Scholar
  28. 28.
    Horn, D. M.; Zubarev, R. A.; McLafferty, F. W. Automated De Novo Sequencing of Proteins by Tandem High-Resolution Mass Spectrometry. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 10313–10317.CrossRefGoogle Scholar
  29. 29.
    Kelleher, N. L. Top-Down Proteomics. Anal. Chem. 2004, 76, 197A-203A.CrossRefGoogle Scholar
  30. 30.(a)
    Siuti, N.; Kelleher, N. L. Decoding Protein Modifications Using Top-Down Mass Spectrometry. Nat Methods. 2007, 4, 817–821.CrossRefGoogle Scholar
  31. 30.(b)
    Xu, P.; Peng, J. Characterization of Polyubiquitin Chain Structure by Middle-Down Mass Spectrometry. Anal. Chem. 2008, 80, 3438–3444.CrossRefGoogle Scholar
  32. 30.(c)
    Carvalho, P. C.; Xu, T.; Han, X.; Cociorva, D.; Barbosa, V. C.; Yates J. R., III. YADA: A Tool for Taking the Most Out of High-Resolution Spectra. Bioinformatics 2009, 25, 2734–2736.CrossRefGoogle Scholar
  33. 31.
    Oppenheim, F. G.; Hay, D. I.; Franzblau, C. Proline-Rich Proteins from Human Parotid Saliva. I. Isolation and Partial Characterization. Biochemistry. 1971, 10, 4233–4238.CrossRefGoogle Scholar
  34. 32.
    Azen, E. A.; Oppenheim, F. G. Genetic Polymorphism of Proline-Rich Human Salivary Proteins. Science. 1973, 180, 1067–1069.CrossRefGoogle Scholar
  35. 33.
    Karn, R. C. Steroid Binding by Mouse Salivary Proteins. Biochem. Genet. 1998, 36, 105–117.CrossRefGoogle Scholar
  36. 34.
    Herrera, J. L.; Lyons, M. F., II; Johnson, L. F. Saliva: Its Role in Health and Disease. J. Clin. Gastroenterol. 1988, 10, 569–578.CrossRefGoogle Scholar
  37. 35.
    Maeda, N.; Kim, H. S.; Azen, E. A.; Smithies, O. Differential RNA Splicing and Post-Translational Cleavages in the Human Salivary Proline-Rich Protein Gene System. J. Biol. Chem. 1985, 260, 11123–11130.Google Scholar
  38. 36.
    Castagnola, M.; Messana, I.; Inzitari, R.; Fanali, C.; Cabras, T.; Morelli, A.; Pecoraro, A. M.; Neri, G.; Torrioli, M. G.; Gurrieri, F. Hypo-Phosphorylation of Salivary Peptidome as a Clue to the Molecular Pathogenesis of Autism Spectrum Disorders. J. Proteome Res. 2008, 7, 5327–5332.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2010

Authors and Affiliations

  • Frédéric Halgand
    • 1
  • Vlad Zabrouskov
    • 2
  • Sara Bassilian
    • 1
  • Puneet Souda
    • 1
  • David T. Wong
    • 4
  • Joseph A. Loo
    • 3
  • Kym F. Faull
    • 1
  • Julian P. Whitelegge
    • 1
  1. 1.The Pasarow Mass Spectrometry Laboratory, NPI-Semel Institute for Neuroscience and Human Behavior, David Geffen School of MedicineUniversity of California-Los AngelesLos AngelesUSA
  2. 2.Thermo Fisher CorporationSan JoseUSA
  3. 3.Department of Chemistry and Biochemistry and Department of Biological ChemistryUniversity of California-Los AngelesLos AngelesUSA
  4. 4.School of DentistryUniversity of California-Los AngelesLos AngelesUSA
  5. 5.Laboratoire de Bioénergétique et Ingénierie des Protéines, Equipe de protéomique fonctionnelle et dynamiqueUPR 9036-CNRSMarseille CedexFrance

Personalised recommendations